The Omega project

UML based modeling of real-time and embedded systems with formal validation

(2002-2005)
Partners

Academic (tool and technology providers)

- **Verimag**, France – coordinator
- Christian-Albrechts University **Kiel**, Germany
- **CWI** (Centrum voor Wiskunde en Informatica), Netherlands
- University of **Nijmegen**, Netherlands
- **OFFIS**, Germany
- **Weizmann** Institute, Israel

Users

- **EADS** Launch Vehicles, France
- **France Telecom R&D**, France
- **Israeli Aircraft Industries**, Israel
- **NLR** (Nationaal Lucht- en Ruimtevaartlaboratorium), Netherlands

Supporters (UML tool providers)

- I-Logix --- Rational Software, IBM --- Telelogic
Model based development and validation of real-time systems

Model (UML)

- Requirements
 - Structure (classes, components, …)
 - Behaviour (state machines)
 + time

System and environment
- System and environment

Update

Code generation
- Test cases
- Running implementation

Simulation
- Semantic models
- Validation tools

Update

System \n\nRequirements
How well does UML fit?

Strong points of UML

- Support of requirement level and design level notations, including architecture and components, which made their proofs
- User acceptance
- Existence of Case tools and model interchange format XMI
- Integration in development cycle possible

Weak points of UML (for validation of dynamics)

- Concepts are defined at syntax level, many issues in semantics are left to tools to fix them
- Weak support of real-time concepts (improved by UML 2.0)
Approach

1. Define a profile: select a suitable subset of UML
 • adapt and extend where needed with a special emphasis on timing
 • define an appropriate semantics

2. Propose a development methodology, based on
 • the user’s development methodology
 • the UML modeling and specification capabilities
 • verification methods and tools developed in the project

3. Provide methods and tools for formal specifications and verification covering the chosen profile
 • Model interchange via standard XMI

4. Proposed methodology and tool-set evaluated on four industrial case studies
1. Omega UML profile for real time
 - A rich subset, useful for development
 - Notations for design and requirement specifications
 - Kernel model: close to operational subset of profiles of main tool providers with real-time in the spirit of SPT
 - Component and architecture description
 - Requirement notations of different nature:
 - Operational: Live sequence charts, Observers
 - Declarative: OCL
 - Positive feedback from users
 - Some concepts may influence standard evolution
 - Timed extensions
 - Observers for expression of requirements
 - Live sequence charts
 - Existence of formal semantics helpful for tool builders
Results: tools

XML format (SXMI)
- Intermediate representation

PVS based validation
- UML models and OCL with time in PVS
- Infinite and parameterized models

XML based execution
- Rule based tool for execution of XMI

XML format (SXMI)
- Omega exchange format

Omega compliance check

Timed model-checking (IF)
- OMEGA models with time extensions and observers
- Internal: timed automata with priority rules
- Enumerative MC
- UML oriented feedback
- Visual representation of properties and error traces

Untimed Model-Checking (UVE)
- Omega models with discrete time
- Internal: symbolic transition relation
- BDD based MC against LSC and temporal logic
- Error traces = sequence charts

LSC tools
- Extract class information from XMI
- Editing of LSC with time (play-in)
- Consistency of LSC
- Export of LSC to XML
- State machine synthesis (play-out)

XML Representation of LSC

Omega Workshop - February 17, 2005 - Grenoble
Results: tools

- A set of tools covering all notations of the Omega profile
 - Different aspects of a model are checked by different tools, abstracting from other aspects
 - Different kinds of properties are checked
 - Problem: some variations on common parts
 - No other validation tools cover such a large profile

- Tool integration
 - Tool interchange by sharing models via an identified exchange format (XMI/XML)
 - Requirement: all tools agree on the common features
 - No heavy integration
Omega profile and semantics
Frank de Boer - CWI, Bernhard Josko – OFFIS
IF simulation and verification tool for UML
Marius Bozga, Iulian Ober - Verimag

Omega Tools and Case studies
Modelling and verification of the Mars case study
Yuri Yushtein - Kiel Univ, Jozef Hooman - Nijmegen Univ
Ariane 5 flight program timing verification
David Lesens – EADS
A component based depannage service modelled with LSC
Pierre Combes - FTR&D, Hillel Kugler – Weizmann
Timing analysis of a voting monitor with 2 CPUs using IF
Meir Zenou - IAI