

OMEGA— Correct development of Real-Time embedded systems in UML —

EADS SPACE Transportation Case Study Ariane 5 Flight Software

David LESENS

Email: david.lesens@space.eads.net

Description of the Ariane 5 case study

- Merge asynchronous and cyclical behaviors
- Environment
- Asynchronous behavior
- Cyclic behavior
- Tools
- Evaluation & Conclusion

OMEGA IST-2001-33522 Spacecraft management / mission phases

Spacecraft management deals with timed sporadic events

⇒ Use of timed asynchronous semantics

OMEGA - Grenoble, 17 February 2005

- Acquisition of measurement
- Where am I ?
- Where shall I go ?
- Compute the commands
- Send commands to actuators

Spacecraft control command Globally Asynchronous / Locally Synchronous (GALS)

OMEGA - Grenoble, 17 February 2005

- 1) Development of the spacecraft behavior model
- 2) Addition of complement for the SW ctrl / cmd design
- At each stage: <u>environment and properties</u>

Overview

Description of the Ariane 5 case study

- Asynchronous behavior
 - Model
 - Property description
- Cyclic behavior
- Tools
- Evaluation & Conclusion

Environment description

wait ignition p1

match send ::EADS::\$ignals::Start(void) by g / begin mc := g.Acyclic.MissionConstants; tc := g.Acyclic.TimeConstants end

Property example (timed)

Informal description

 If the liftoff is performed, the boosters shall be released at due time.

Overview

- Description of the Ariane 5 case study
- Asynchronous behavior
- Cyclic behavior
 - Bus model
 - Multitasking model
 - CPU consumption model
- Tools
- Evaluation & Conclusion

Design of the Ariane 5 Flight Software (also used for ATV, Vega, ...)

Use of a 1553 MIL BUS

- Reservation of predefined timed slot for each type of transfer
 - Bus access forbidden during physical transfer
- Definition of a bus frame with respect to the required reactivity

Multitasking

- One thread by frequency
 - 1Hz, 10Hz, acyclic, ...
- Preemptive with fix priority
 - The higher frequency has the higher priority

A real time scheduler runs the different processes, taking into account the multitasking and the bus frame

- Bus frame construction (depending of the required reactivity)
- Real time scheduler

NSPORTATION

- Measurement available at cycle start
- Commands sent at cycle end

Synchronous hypothesis Use of SCADE Correct "a priori"

- Bus frame construction (depending of the required reactivity)
- Real time scheduler

Measurement

- Measurement available during the cycle
- Commands sent during the cycle

Synchronous hypothesis violated Use of Ω UML Verification "a posteriori"

Commands

begin
 theTask := new::CPU::Task::Task(1, Acyclic.Ground.CPU)
end

This task has the first priority

Definition of CPU consumption for each function

begin Cyclics.theTask.exec(5) end

This action consumes 5 units of time

Overview

- Description of the Ariane 5 case study
- Asynchronous behavior
- Cyclic behavior
- Tools: IF Toolbox
 - Problem of time scale
 - Simulator
 - Proof tool
- Evaluation & Conclusion

Time scale problem

Basic cycle of the cyclic behavior

- 100 ms
- About 100 steps
- 1 hour mission
 - 3 600 000 steps
- 6 months mission
 - 15 000 000 000 steps
- 15 years mission
 - 300 000 000 000 steps
- Explosion of the number of states
 - Several hours/days/... of simulation => not usable
 - Limit of the proof tools reached

Abstraction of the cyclic parts

• Proof of the <u>asynchronous</u> part without the cyclic part

Abstraction of the asynchronous parts

• Proof of the cyclic part without the asynchronous part

Reduction of the mission duration

- 30 seconds mission instead of 1 hour
- 30 000 steps
- Whole system validated (cyclic + acyclic)

	Mission duration	Number of states	Number of transitions	Proof duration
1	7 000 ms	51 324	54 697	00:03:30
2	15 000 ms	161 956	171 734	00:12:06
3	22 000 ms	303 496	321 206	00:11:33
4	30 000 ms	463 932	490 901	00:22:58
5	37 000 ms	658 981	696 031	00:34:53

ਸ	IFx simulator interface 🛛 😽 🔳 🔊							
File View Compile Simulate								
Configuration UML objects Watches								
group no=2	transitions							
DS_Stages_EPC no=0 state=intermediate	• event kind=INPUT value=u2icall_EADS_Environment Values_Open{p1={nil}0,p2={EADS_Stages_EPC}0,p3={EADS_St							
self	• event kind=INFORMAL value=start transition from Close to <u>u2ichoice_af_1441</u>							
Acyclic	• event kind=INFORMAL value=start transition from u2i_choiceaf1411 to Open +							
clock	• event kind=INFORMAL value=return							
current_is_ok	• event kind=OUTPUT value=u2ireturn_EADS_Environment_Valves_Open{p1={EADS_Stages_EPC}0,p2={EADS_Environme							
Cyclics	<pre></pre>							
EAP	• event kind=INFORMAL value=start transition from Close to u21choiceaf_1441							
EVBO	• event kind=INFORMAL value=start transition from w2i_choiceaf1411 to Failed_Open							
EVVCh	• event kind=INFORMAL value=return							
EVVCO	• event kind=OUTPUT value=u2ireturn_EADS_Environment_Valves_Open{p1={EADS_Stages_EPC}0,p2={EADS_Environme							
• object name=EADS_Environment_Valves no=3								
EVVGH								
EVVP								
Guidance_Task								
но								
H0_time								
MissionConstants								
	<pre>/transitions/trans[@no="2"]</pre>							
	Selection:							
Selection:								
	Quick search: ++							
Quick search:	Stop conditions							
Stop conditions								
· · · · · · · · · · · · · · · · · · ·	Transitions Output							
Connection: 15555@localhost Step: 182/192								
• 🐝 🐑 🐟 🔊 🐷 🐼	3 Terminal – Terminal <3> Screen Capture 3 3 Screen Capture							

A counter example is generated

Metrics on the proof tool

Property	Number of states	Number of transitions	Proof duration
liftoff_aborted_right	36037	38149	00:00:36
pyro_not_ignited_twice	35988	38092	00:00:42
valve_not_abused	36082	38210	00:00:37
valve_not_close_in_close	36010	38114	00:00:44
valve_not_open_in_open	35998	38102	00:00:38
liftoff_performed_right1	46075	48713	00:00:49
liftoff_performed_right2	37897	40550	00:00:55
liftoff_performed_right3	37961	40632	00:01:12
liftoff_performed_right3 no_clock_reset	1048028 abort	1347402 abort	00:42:50 abort
liftoff_performed_right4	35986	38090	00:00:38
CPU_not_in_error	35980	38084	00:00:53
G_cycle_is_schedulable	36012	38116	00:00:48
NC_cycle_is_schedulable	36380	38484	00:00:39
read_write_coherence	36618	38722	00:00:47

A bad written property

The same well written property

OMEGA

IST-2001-33522

Overview

- Description of the Ariane 5 case study
- Asynchronous behavior
- Cyclic behavior
- Tools

Evaluation & Conclusion

Model of

- The spacecraft behavior (mission management, asynchronous)
- The ctrl / cmd SW (control / command, cyclic behavior)
 - Multitasking
 - CPU consumption
- The environment
 - Avionics (valve, pyrotechnic commands, ground control center, ...)
 - Communication bus

Validation of all the specified properties

- By simulation
- Proof is a complement of test
 but does not replace test
- By proof
 but does not r
- Detection of intentional bugs of the model

For "low" reactivity needs

- Use of the synchronous hypothesis
- Control command described using SCADE
- 60% to 90% of the software

For "high" reactivity needs

- When <u>the synchronous hypothesis is violated</u> (Required reactivity < basic cycle duration)
- Asynchronous semantics
- Important effort of modeling (several thousands of bus transfers)

⇒ OMEGA UML for hard point analysis

0 0

IF simulator

- Respect the OMEGA syntax/semantics
 - Powerful debugging facilities
- Precise interpretation of results requires some knowledge of tool internals

- No automated feedback from the VERIMAG tool towards the UML tool
- Objects of the IF model are visible, even if not defined by the user
- Slow for big scenario (>30Mb, >30000 transitions)
- \Rightarrow Hard to use in practice for "cyclical" debugging (several hours)

 \circ

Use of observers

Powerful

- Untimed and timed properties
- Intrusive properties ("integration tests")
- Non intrusive properties ("validation tests")

Property description formalism very easy to understand

- Finite state machine
- Defined in OMEGA UML syntax and semantics
- Intuitive concept of real time

IF proof tool

Answers all the user needs

- Very quick result
- In case of non satisfied property, computation of a failed scenario
- All properties proved

Same defaults as the simulator

- No feedback from the VERIMAG tool toward the UML tool (for the computed failed scenario)
- No usable failed scenario for big models
- => Debugging not easy

General conclusion

- OMEGA UML allows to model the real time behaviors of a spacecraft
- Validation early in the development cycle
 - Improve the software quality
 - Decrease the software development costs
- No link with SCADE

We need industrial tools to use OMEGA UML

Questions?

OMEGA - Grenoble, 17 February 2005