Animation and formal verification of a component-based application using live sequence charts (LSCs) and the Play-Engine

Omega workshop
Grenoble – February 17, 2005

Pierre Combes (FTR&D), Hillel Kugler (Weizmann Institute)
Using the Play-Engine and LSCs for studying a Telecom application (Depannage by FTRD)

Play-Engine Tool

Language: Live Sequence Charts (LSCs)
Specification of Requirements – Play-In
Execution of Requirements – Play-Out
Smart Execution and Verification – Smart Play-Out

Motivation for work
Modeling in LSCs is a new approach
Evaluation by Industrial user and not the tool developer
Case Study Represents broader class of applications
Extend visual formalism used for requirements: message sequence charts (MSCs)
Live sequence charts (LSC’s)

“LSC’s: Breathing Life into Message Sequence Charts”

(Damm & Harel, ‘98)

A natural extension of classical MSCs, with modalities (universal/existential, hot/cold, etc.) and structure (subcharts, conditionals, loops, etc.)
Basic form of a universal LSC

Example

prechart (if)

main chart (then)
Existential LSC
A component-based approach

A system (composite) is built from a set of embedded components

- The system (composite) is specified by a set of requirements
- The architecture of the system is built from components and connectors: an architectural model
- Assumptions could be associated to connectors
 - Introduction of delays, time constraints, loss message rates

Components are described by

- A set of interfaces (required and provided)
- Assumptions (abstract behaviors) on their interfaces
 - Components should be reusable
The Service: *Depannage (Emergency)*

- A telecommunication service
- A User (fixed phone but mainly for mobile phone) calls a specific number in order to find assistance service (depannage but also urgency: police, fire brigade, doctor)

The objective is to connect the user, as quickly as possible, to a member of the depannage society
- Which is at a location nearby the user location
- Call attempts are done for different potential called numbers (in sequential or in parallel)
- In any case, the caller should be connected to a vocal box or a secretariat

- The depannage society has several employees
 - Moving and which could be busy (by another client, or by another occupation) or not accessible (in a concert hall!)
The Service: *Depannage (Emergency)*

- Based on a set of service and platform components (embedded in mobile terminals or core network)
 - Service Features: authentication, location, search (in sequential, in parallel), etc
 - Interface Features (for session control, user interface, location, discovery)
 - Platform Components (communication between platform(s) and network)

- The environment model includes the users, the network and the location architecture
 - Timed and Un-timed Requirements at the system level
 - Many Time constraints in service components, component interactions and environment
 - Time constraints that could lead to unexpected behaviours
Component modeling with LSC

✓ **Components:**
 ✓ Described independently of any embedding system
 ✓ Described as a black box
 ✓ Interfaces (signatures) and Ports
 ✓ Described as a *grey* box
 ✓ The abstract view (assumptions) of the behaviour of each component on its interfaces
 ✓ Time constraints and Delays due to the specific platform (on task execution), periodic requests, etc

✓ With help of Universal LSC
Described by a set of LSCs
Independently of any embedded system
Search On List

Ports

Core of the component

No Forbidden Elements
Search On List

T is recorded, just after the sending of LegDest.

The main chart is executed. On reception of LegCallReturn:

- If time evolution is Under 1, then try another Destination party.
Composite Modeling with LSC

✓ Based on UML2 architectural diagram
 ✓ Express Requirement (Existential LSC) from the system (composite) point of view
 ✓ Static description of embedded components and connectors
 ✓ Express the dynamic behaviour (assumptions) on connectors (Universal LSCs),
 ✓ Time constraints, Delays, Message losses on protocols and communications (with probabilities)
 ✓ Express the environment potential behaviours (Universal LSCs)

✓ Great use of symbolic instances
 ■ Remark: we did not develop graphical user interface
The Composite: an architectural view

active public class Service_And_Features

Architecture Diagram

+InstLocation: Location[0..20]/0
+InstSearch: SearchOnList[0..20]/0
+InstCallControl: CallControl[0..20]/0
+InstDepannage: serviceDepannage[0..20]/0

OMEGA Workshop - Grenoble, February 17, 2005
Simple Connections
Connections with Delay

On the connector (by signal):

The delays could depend on the signal, the parameters, the history, etc.

We may introduce signal loss and loss rates.

On a port/interface:

LocToDep1

DepToDuo2
The Environment: GSM user

Answer before $T + 1$

Answer after $T + 2$

Busy after $T + 1$
Animation of LSC Model

- Animation for a better understanding of the model execution
 - Executing different scenarios/configurations
 - Recording the traces
 - Observing the existential LSCs

- On the use of LSCs and the Play-In tool
 - LSC is well-suited for the expression of requirements and dynamic assumptions on different parts of the model (components, connectors, system)
 - A graphical language accessible to non-specialist in formal theory
 - Great expressivity
 - Great flexibility
Play-Out scenario
Formal Verification with smart Play-Out

- **Principe of the Play-Out Engine**
 - To find **one** execution that satisfies a existential LSC (the property)

- **Principe of formal verification**
 - Check that, for **all** executions, a requirement is respected (not violated)

- **Principe of the verification method**
 - Express the requirement by a property (an existential LSC) that violates it
 - Run the Play-Out engine
 - If the property is satisfied, then the requirement is violated (for at least one execution path)
 - If the property is not satisfied, the requirement is verified for all execution paths
Time requirements

- We mainly want to verify requirements such as:
 - $D_1 < \text{Time_Duration} < D_2$
 - Time_Duration is the end-to-end execution delay

- Example: $\text{Time_Duration} < D_2$
 - We express the property by an existential LSC with a condition
 - $\text{Time_Duration} \geq D_2$
 - Running the Play-Out Engine, the property is not satisfied
Restrictions on the smart Play-Out

- No symbolic instances
- Multiple parameters in signal

State-explosion problem

- Needs to make several models
 - Focusing on specific parts of the model (more complex/critical)
 - Reducing non determinism
 - Use of configuration
 - Feedback on the complete model

- Very good compromise between formal techniques and readability

- Three examples
1 Existential LSC

Not satisfied

For all execution
Time_Duration will be more (or equal) than 1

Satisfied
2 Another Time Requirements

Not satisfied

Always, the end-to-end delay will be Less than 4
3 Search Component

EstablishSearchA

SearchOnList APICall Depannage

LegDes(0601)

X348 = Time

CallReturn(answer)

X923 = Time

SearchReturn(4134)

Time × 348 + 1

ReturnSearch(quick answer)

Time × 923 + 1

SearchReturn(0601)

ReturnSearch(answer)

Time × 923 + 1
If user3 makes quickanswer, The return should not be answer

No satisfied with first configuration

Satisfied with the second configuration:

Adding a new feature (Forward)