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Abstract. We present an approach towards a formal dynamic semantics for 
UML using ASM. We aim to remain as close as possible to the standard 
definition of UML and to cover the operational part of the language with 
particular attention to the behavior description based on actions. To remain 
close to the standard UML, we automatically translate the UML metamodel in 
ASM. This allows to take into account all the concepts and relationships 
contained in the standard, and to minimize the changes subsequent to the 
frequent updates of the standard. 
For the dynamic part, the particularity of our approach is that we focus on 
actions, as defined in our proposal to the OMG action semantics working group. 
We deal with concurrency, signal exchange, operation calls, general 
communication primitives, etc. We do not define the semantics of state 
machines, but we clearly define their place within the framework of our 
semantics. We also describe how the ASM domains and functions used in the 
semantics are built initially from a particular UML model. 

1 Introduction 

While UML is rapidly becoming the industry standard for modeling, its standard 
definition does not contain a precise semantics. The semantics of UML is defined, in 
Chapter 2 of [19], by a textual description coming with some meta-modeling 
description (an of abstract syntax of the language). A preliminary part of our research, 
not described in this paper, that can be found in [15, 17] consisted in defining a 
mechanism for behavior description based on actions. This work was done as a 
response to an official request by the OMG, in conjunction with the Action Semantics 
Working Group. To complete the behavior description mechanism based on actions, 
we formalize it in the framework of the entire UML language. 

In this paper we present a UML formalization approach using Abstract State 
Machines (ASM) [10]. We have chosen the formalism of ASMs for its expressing 
power coupled with a high level of abstraction, that applied nicely to a related 
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formalization targeting the SDL semantics [6, 13]. Our formalization approach can be 
regarded both in connection with the previous work, and as a stand-alone UML 
formalization approach. We use as starting point for our formalization the UML meta-
model which we translate automatically in ASM. This allows us to consider all the 
concepts and relationships existing in the standard. Also, as the language is 
continuously subject to (in general minor) changes, our semantics can easily adapt to 
new versions. On the other hand, at the moment we write this paper a major update of 
the language is planned. Our approach will minimize the changes needed in the 
semantics. 

For the dynamic part we use the actions for specifying behavior. Actions cover 
transformational and control-oriented behavior (through data access, assignments, 
loops and decision constructs), as well as interactive behavior (through remote 
operation calls, signal passing, etc). We describe the concurrency model. In this paper 
we give only the basic principles of the semantics definition and some examples. For 
more details on the actual semantics the reader is referred to the Annex B of [17]. 

The rest of the paper is organized as followings: in Section 2 we argue on the need 
for a precise semantics for UML and we highlight some points to take into account for 
the semantics definition. Section 3 gives some insight into the approach we have 
taken. We describe here the overall approach and the structure of the semantics, we 
briefly present the static and the dynamic parts of the semantics (§3.1-§3.2), and we 
end this Section by presenting how the semantics applies to specific models (§3.3). In 
Section 4 we present some related work and we try to position our research in this 
context. We end in Section 5 by drawing some conclusions and presenting future 
work directions. 

2 Need for precise semantics of UML. 

The need for a precise semantics of UML was often stated [7, 8]. A sound semantics 
for UML allows to build tools that check models, simulate them, and generate code. 

Currently, the UML semantics is informally defined in plain text and it is often 
unclear, ambiguous or it contains contradictory assertions. Tools containing compilers 
use various methods to solve these problems, which led to different actual UML 
semantics implemented by different UML tools.  

Although the existence of an informal semantics does not preclude the fulfillment 
of these goals, the practice has proven that a formal semantics brings them closer. 
That is why we will use formal techniques for defining the UML semantics. 
Nevertheless, we do not see the definition of a formal semantics as a goal, it only 
represents a possible way towards increased precision and advanced tool support. 

The definition of a precise semantics should take care of two essential UML 
characteristics: the fact that UML is intended to address the early phases of analysis 
and design, thus the need to handle incomplete and possibly inconsistent information, 
and the fact that UML is mostly seen as a family of languages [5], possibly 
demanding contradictory semantics. The fact that UML shall be applicable on various 
domains with contradictory demands for the semantics of the same entity was often an 
argument against the definition of a precise semantics for UML. 



This formalization approach is a continuation of previous efforts on defining a 
precise semantics to UML actions. These efforts [17 chapter 7, 15] resulted in the 
definition of a framework for behavior description based on actions. 

UML state machines are incomplete without a precise actions semantics, as actions 
describe what happens on state and transitions. On the other hand, we can completely 
describe behavior using actions (and no state machine). Therefore by focusing on 
action we can treat complete specifications. 

Our semantics applies to a domain where behavior is important and it is described 
through actions, thus we give special attention to behavior and communication. Part 
of the task of this approach is to make choices, when the standard leaves place for 
alternatives (e.g. we will use a specific model for concurrency, a certain semantics for 
signal exchange, etc.). This choices are of course arguable, but unavoidable to obtain 
a meaningful semantics. 

We use Abstract State Machines [10] for our formalization because they allow an 
operational description at a high abstraction level. Subsequent changes to the 
semantics definition will demand a reasonable amount of extra-efforts and the high 
level of abstraction would solves some of the problems related to over-specification. 
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Fig. 1. Structure of the UML semantics 

3 UML semantics definition 

The definition of the ASM formal semantics of UML consists in associating to each 
UML model a particular multi-agent real-time ASM. Therefore, given an UML 
model, which is an instance of the UML meta-model, we have to identify its 



corresponding ASM agents, functions and domain names and for each agent the ASM 
program that describes its behavior. 

Fig. 1 illustrates the structure of our formal semantics definition. As shown in this 
figure, the static semantics part expresses each UML basic concept in terms of ASM 
names and constraints. In the UML standard [19] the static semantics is defined using 
the UML meta-model, constrained through some integrity constraints, expressed as 
well-formedness rules (WFRs) described in OCL, or in plain text. 

In order to best use the existing specification, as the UML meta-model contains 
information expressed in a semi-formal way, we have developed an automatic ASM 
generator that translates the information contained in the UML meta-model into 
ASM. In the next  Section we will discuss this tool into more detail. 

Our static semantics definition contains constraints corresponding to the WFRs 
stated in the definition of UML both in OCL and in plain text. Additionally, the static 
semantics offers access function to various elements of the static semantics, describes 
the method lookup mechanisms, etc. 

The dynamic semantics is constituted by some ASM names, constraints and rules 
that describe the basis of behavior. These rules formalize the semantics of signal 
passing, of execution threads, of the signal queue etc. The dynamic semantics does 
not correspond directly to anything from the UML meta-model, although the basic 
concepts (operation, signal, etc) are part of the meta-model and have been translated 
into ASM in the static semantics part. 

The dynamic semantics contains functions that describe the evaluation of 
expressions, and operational semantics of UML actions expressed in ASM, based on 
an execution engine that describes the basis of behavior (message passing semantics, 
time, etc.). When defining the dynamic semantics we often have to choose the 
semantics we give to various constructs, because the UML standard does not cover all 
details - either deliberately, or by omission. 

As one can see from Fig. 1, the final result of the semantics definition is an ASM 
program equivalent to an arbitrary UML model. This ASM program may be used to 
generate code that will conform the semantics, or as input for ASM simulators which 
may execute symbolically the ASM program corresponding to an UML model. Some 
ASM tools offer already part of this functionality, some others may be further 
developed in order to offer a better coupling between the UML model specification 
and the simulations performed on the equivalent ASM program. Such tools could be 
made transparent to the UML modeler, which does not have to be aware of the fact 
that his model is internally translated into ASM, by feeding back at UML level the 
results of the simulation and verification. 

3.1. Static semantics 

Currently, the static semantics of the standard UML is defined by the UML meta-
model, by some informal textual descriptions and it contains constraints given as well 
formedness rules [19]. Our static semantics definition has to capture all of these 
concepts in ASM. Additionally, the static semantics should contain ASM names for 
access functions and a method lookup mechanism. 



Automatic meta-model translation using XMItoASM 
The first step of the UML semantics definition consists in giving the ASM names 
equivalent to UML concepts. The UML meta-model is a formalism for defining 
entities and relationships between them. In order to translate automatically the 
information contained in the UML meta-model into ASM, we have developed a tool 
that has as input the standard UML meta-model (in XMI form) and translates it into 
ASM. When applied on the UML meta-model, this translator, that we call XMItoASM, 
recovers names (domains and functions) and constraints from the UML meta-model 
classes, attributes, associations and generalizations. 

Being a one-time only process, the translation of the UML meta-model could have 
been done by hand, but the automatic translation has the advantage that it minimizes 
the risk of translation errors and it allows an easy update of the ASM names and 
constraints in the event of further changes in the UML meta-model. 

For exemplification we consider the excerpt from the UML meta-model (from the 
Core package) depicted in Fig. 2. The ASM names corresponding to the classes 
described in this example are contained at lines 1-9 in Fig. 3. 
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Fig. 2. UML meta-model extract 

1 static domain UMLMODELELEMENT
2 static domain UMLFEATURE
3 static domain UMLNAMESPACE
4 static domain UMLPARAMETER
5 static domain UMLCLASSIFIER
6 static domain UMLSTRUCTURALFEATURE
7 static domain UMLBEHAVIORALFEATURE
8 static domain UMLOPERATION
9 static domain UMLMETHOD
10 constraint UMLNAMESPACE ⊆ UMLMODELELEMENT
11 constraint UMLFEATURE ⊆ UMLMODELELEMENT
12 constraint UMLPARAMETER ⊆ UMLMODELELEMENT
13 constraint UMLBEHAVIORALFEATURE ⊆ UMLFEATURE
14 constraint UMLSTRUCTURALFEATURE ⊆ UMLFEATURE
15 constraint UMLOPERATION ⊆ UMLBEHAVIORALFEATURE



16 constraint UMLMETHOD ⊆ UMLBEHAVIORALFEATURE
17 constraint UMLCLASSIFIER ⊆ UMLNAMESPACE
18 static ModelElement_name :UMLMODELELEMENT→ UMLNAME
19 static Feature_ownerScope :UMLFEATURE → UMLSCOPEKIND
20 static Feature_visibility :UMLFEATURE → UMLVISIBILITYKIND
21 static StructuralFeature_multiplicity :UMLSTRUCTURALFEATURE

→ UMLMULTIPLICITY
22 static StructuralFeature_changeability:UMLSTRUCTURALFEATURE→

UMLCHANGEABLEKIND
23 static StructuralFeature_targetScope :UMLSTRUCTURALFEATURE

→ UMLSCOPEKIND
24 ModelElement_namespace :UMLMODELELEMENT→ UMLNAMESPACE-set
25 Namespace_owned :UMLNAMESPACE → UMLMODELELEMENT-set
26 constraint ∀ ns∈ UMLNAMESPACE:

|ns. ModelElement_namespace| = n, n∈ NAT, n ≤ 1
27 constraint ∀ ns∈ UMLNAMESPACE-set, ∀ ms∈ UMLMODELELEMENT-set:

(∀ n∈ ns: n.Namespace_owned =ms) ⇔ (∀ m∈ ms:
m.ModelElement_namespace =ns)

28 Classifier_feature :UMLCLASSIFIER → UMLFEATURE-sequence
29 Feature_owner:UMLFEATURE → UMLCLASSIFIER
30 constraint ∀ c ∈ UMLCLASSIFIER, ∀ fs∈ UMLFEATURE-sequence:

c.Classifier_feature =fs ⇔ (f.Feature_owner = c, ∀ f∈ fs)
31 StructuralFeature_type:UMLSTRUCTURALFEATURE → UMLCLASSIFIER
32 BehavioralFeature_parameter:UMLBEHAVIORALFEATURE →

UMLPARAMETER-sequence
33 Parameter_behavioralFeature:UMLPARAMETER → UMLBEHAVIORALFEATURE
34 constraint ∀ b ∈ UMLBEHAVIORALFEATURE, ∀ ps∈ UMLPARAMETER-

sequence:
b.BehavioralFeature_parameter = ps

⇔ (p.Parameter_behavioralFeature = b, ∀ p∈ ps)
35 Parameter_type:UMLPARAMETER → UMLCLASSIFIER
36 Operation_method: UMLOPERATION → UMLMETHOD-set
37 Method_specification: UMLMETHOD → UMLOPERATION
38 constraint ∀ ms ∈ UMLMETHOD-set, ∀ o∈ UMLOPERATION:

o.Operation_method = ms ⇔ (∀ m∈ ms:
m.Method_specification = o)

Fig. 3. ASM domains corresponding to UML meta-classes 

The fact that a meta-class inherits another is expressed in ASM through an 
inclusion constraint between the domain corresponding to the parent class and the 
domain corresponding to the child class. Remark that here we are talking about the 
inheritance at meta-model level. While it would be of course extremely reductive to 
see inheritance at UML model level as simple domain inclusion, this is sufficient at 
the meta-model level, where there are no operation definitions and the inheritance is 
added to make obvious semantic relationship between classes and to factorize 



specification. The ASM constraints (domain inclusions) corresponding to the 
generalization relationships from Fig. 2. are shown at lines 10-17 in Fig.3. 

To each attribute and association navigable direction in the UML meta-model we 
associate an ASM function. For attributes, the function is defined on the ASM domain 
corresponding to the meta-class that owns the attribute, and with the codomain the 
ASM domain corresponding to the type of the attribute. Examples of functions 
corresponding to attributes are given at lines 18-23 Fig. 3. For associations, the 
functions are obtained similarly, as in the case of the functions at lines 24-36. 

If the target association end has the multiplicity 1, the codomain of the function 
corresponding to that navigable direction is the ASM domain corresponding to the 
class connected to the target association end, as it is for instance the case with the 
functions at lines 29, 31, 35 in Fig. 3. 

If the association end does not have the multiplicity 1 and if the target association 
end is ordered, then the codomain of the ASM function corresponding to that 
association direction is a sequence (ordered set) of the ASM domains of the target 
class, as in the functions at lines 28, and 32 in Fig. 3. Otherwise, the codomain is a 
new domain: a finite (unordered) set of the ASM domains corresponding to the target 
association end (ex functions at lines 24, 25, 27, 36 in Fig. 3. 

In the case of bi-directional associations we add integrity constraints to capture the 
fact that the functions corresponding to each navigable directions are symmetrical. 
(lines 27, 30, 34, 38 in Fig. 3.) 

Our formalization does not cover the entire UML. This means that not all the ASM 
names and functions obtained from the UML meta-model will be used subsequently. 
The ASM names and constraints not needed may be removed from the semantics or 
may be simply ignored. We choose to keep them in the semantics; this ensures that 
the information contained in ASM matches accurately the information contained in 
the UML meta-model, and makes further enhancements easier. Annex B of [17] 
contains most of the ASM code automatically obtained from the UML meta-model. 

Additional constraints 
Besides the ASM constraints obtained after the translation of the UML meta-model, 
the static semantics of UML contains constraints corresponding to the well-
formedness rules (WFR) existing in UML Semantics [19]. In the definition of UML, 
these constraints are expressed in OCL and we translate them, by hand, into ASM. 
We have managed to translate all the constraints written in OCL and some of the 
WFR that could not have been expressed in OCL (e.g. 2nd WFR of the SynchState). 

Additional functions 
Next to the functions obtained from the UML meta-model, we define a set of 
functions that facilitate the description of the dynamic semantics: to access all the 
parents of a GeneralizableElement, to get all the attributes owned by a Classifier and 
having as ownerScope the classifier, to check if two operations have the same 
signature, etc. 

Method lookup 
UML distinguishes between operations - signatures of the offered services - and 
methods –implementations for the operations. Several methods may correspond to the 



same operation. However, given a class and an operation defined in that class, there is 
only one main method that actually describes the body of the operation, the other 
methods being overwritten, as an operation may be defined in the ancestors of a class 
and may have a local method overriding its body.  

We use a dynamic method lookup mechanism. Given an operation and a class, the 
method lookup mechanism gives the actual method that describes the body of the 
operation in the context of the considered class. 

We use the method lookup mechanism existing in C++. This means that operations 
are identified by their signature (same as defined by UML, different of the method 
lookup used in e.g. Eiffel or SDL), and an operation is overwritten in an inheritor if it 
contains a local method with same signature. The method that implements a given 
operation is either a local method, or the method implementing the operation defined 
in the closest ancestor, that we find by traversing the inheritance relations captured 
from the meta-model. The whole lookup mechanism is embedded in a single function: 
GetMethodForClassOperation, this minimizes the impact of modifying the lookup 
mechanism. We disallow statically the conflicts generated by repeated inheritance. 

GetMethodForClassOperation: UMLCLASS × UMLOPERATION → UMLMETHOD
GetMethodForClassOperation (c: UMLCLASS , op: UMLOPERATION ) = def

if ∃ o∈ c.Classifier_feature ∩ UMLOPERATION :HasTheSameSignature(o,op)
then let o = take{o ∈ UMLOPERATION|

o∈ c.Classifier_feature ∧ HasTheSameSignature(o, op)}
in o.Operation_method.main endlet

elseif ∃ directP ∈ UMLCLASS :(p ∈ c.GeneralizableElement_parent ∧
∃ o1 ∈ p1.Classifier_feature ∩ UMLOPERATION :

HasTheSameSignature(o1, op))
then let <directP, op1>=take{<p,o> ∈ UMLCLASS × UMLOPERATION|

p ∈ c.GeneralizableElement_parent
∧ o1 ∈ p1.Classifier_feature
∧ HasTheSameSignature(o1, op)}
in o1.Operation_method.main endlet

elseif ∃ p ∈ UMLCLASS :(p ∈ c.GeneralizableElement_allParents ∧
GetMethodClassForOperation(p, op) ≠ undefined)

then let <p, m> = take{<p,m> ∈ UMLCLASS × UMLMETHOD|

p ∈ c.GeneralizableElement_allParents
∧ m = GetMethodClassForOperation(p, op)
∧ m ≠ undefined }in m endlet

else undefined
endif

Fig. 4. Function describing the method lookup 

3.2. UML dynamic semantics structure 

In this section we present the entities that concern run-time information and behavior. 
We complete the definition of the ASM names, started in the static semantics part, 
and we discuss how the ASM state changes at run-time. The dynamic structure is an 
important component of the UML dynamic semantics, it contains the ASM domains 
and functions related to run-time.  



The dynamic semantics defines the set of ASM agents and gives their 
corresponding transition rules. At this point, we focus on the behavior described by 
actions. We do not treat UML state machines, i.e. the dynamic semantics does not 
contain rules and agents corresponding to state machine, but we clearly identify the 
place of the state machines in the framework of the semantics definition. We 
formalize the mechanisms for signal passing, operation call, object creation and 
deletion, and the ASM program rules that corresponds to UML action executions. 

Communication mechanisms 
Run-time UML objects interact by exchanging signals and operation calls. In UML 
the communication is point-to-point, this means that an object can send a signal to 
another object if it knows its identity. The communication semantics that we use for 
our formal definition, is based on the following principles: the communication is done 
by direct addressing, the signal and operation call passing may take time, the order of 
events is not necessarily preserved during the transport, though events are not lost. 
Active objects have incoming event queues, whereas passive objects do not. 

The ASM communication modeling that we use is inspired by the communication 
modeling used in the SDL formal semantics [13, 6]. The communication is based on 
events passing. We add new properties to UML events: the sender (which is 
undefined for spontaneous events), the target, and the arrival time (a shared function 
that captures also the communication time). 

In order to model the communication, we attach to each active object a gate (a 
concept needed for the formalization, not corresponding to anything in UML), which 
represents a unidirectional active object entry point, that exists at run-time. After an 
event is produced, it is placed in its target’s gate, but it is made available to the target 
(it is part of the object’s queue) only when the system time overpasses the event’s 
arrival time.  

This definition of queues and schedules does not constrain in anyway the queue 
policy. Any criterion could be applied for ordering the events in the schedule and in 
the queue, if needed ,some additional signal properties (ex. priority) could be defined.  

Concurrency model 
In this section, we describe the basic principles of concurrency, as defined in our 
semantics. The concurrency handles aspects such as the relationship between threads 
and objects, characteristics of active and passive objects, relationship between 
operation call and state machine execution (even if we do not detail the state machine 
execution itself), etc.  

The concurrency model that we describe subsequently is inspired by the UML 
concurrency model we have described in [14]. However, here we focus only on 
standard UML concepts, we do not add any non-standard concurrency concepts and 
we do not focus on state machine execution. 

In our concurrency model, only active objects have thread(s) of control, while 
passive objects execute exclusively on the threads active objects. The consequences 
of these: passive objects do not have input events queue, asynchronous 
communication with passive objects is not possible, passive objects may not have 
state machines, the only behavior mechanism existing in passive objects is contained 



in its operations (they can at most have protocol state machines, that only constrain 
their execution and do not describe it), when an active object calls an operation of a 
passive object, this operation executes on the callers thread. 

In ASM, we model each execution thread using an ASM agent. 

Active Objects 
Each active object has an event gate and a main execution thread, modeled as ASM 
functions. The main thread manages the incoming events, ensures the dispatch of the 
events in the input queue and, depending on the nature of the dispatched events, relay 
them to the state machine or starts new operation executions, on stand-alone threads. 
If the active object has a state machine, then at least one of the threads owned by the 
object corresponds to the state machine execution1. 

A call directed towards an active object results in the creation of a new execution 
thread. The moment of its creation depends on the concurrency operation property 
(defined in [19] §2.5.), which specifies what happens if concurrent calls of the same 
operation exist. This attribute is mainly designed to protect passive objects against 
concurrent calls, but UML allows operations of active objects to use this property for 
specifying the semantics of concurrent calls. We consider that this attribute is useful 
for active objects, and we take it into account for the semantics of operation calls. 

For exemplification, we take the trickiest case, which is when the call is directed 
towards a guarded operation (multiple calls are allowed, but the call target shall make 
sure that only one call is executed at a time, the others being blocked). An active 
object receiving a call to a guarded operation, first checks whether there are any other 
operations executions for the same operation running. If so, the operation call passes 
to a waiting status, until it can be executed. When no other operation execution exists 
for the called operation, a new thread is created on which the operation is executed. 
The ASM rule that describes these is given in Fig. 5. Not all the names used in this 
rule have been defined in this paper, nevertheless we tried to choose them as 
suggestive as possible. For their precise definition that reader is referred to [17]. 

Some basic rules that govern the behavior of active objects: 
If the input queue of an active object is not empty, the active object successively 

treats all events contained in it, resulting in operation initiation, result return of remote 
calls towards the current object, or event forward to the state machine. 

Since each call of an active object operation is treated on a different thread, 
recursive operation calls of are treated as regular calls, i.e. on several threads.2 

The active object’s state machine may receive call events, but only if they do not 
correspond to calls directed towards the current active object. This is to avoid the 
situations when the target object could ignore a call. When the main thread of the 
active object is available (no new events exist in the input queue), the active object 
may launch the calls towards guarded operations whose execution was blocked due to 
the guarded operation constraint, provided that they guard condition became valid. 

                                                           
1 Concurrent sub-states of the state machine could be implemented on different threads, 

however this is a state machine semantics issue. 
2 One of the static constraints that we added, forbids recursive calls for sequential operations. 

Note however that this constraint cannot always be checked statically, thus our model cannot 
guarantee the absence of deadlocks, which we consider modeling errors. 



TREATGUARDEDOPERATION(a:UMLACTIVEOBJECT, op: UMLOPERATION, ev:UMLCALLEVENT) ≡
if |Object_operationSlot(a, op).OperationSlot_execution|=0
then
if |Object_operationSlot(a, op).OperationSlot_waitingCalls|=0
then

LOUNCHOPERATIONTHREAD(ev)
else
let callToLaunch = Object_operationSlot(a, op).

OperationSlot_waitingCalls.head in
LOUNCHOPERATIONTHREAD(callToLaunch)
Object_operationSlot(a, op).OperationSlot_waitingCalls :=
(Object_operationSlot(a, op). OperationSlot_waitingCalls\

<callToLaunch>)∩ <ev> endlet
endif

else
Object_operationSlot(a, op).OperationSlot_waitingCalls :=
Object_operationSlot(a, op).OperationSlot_waitingCalls ∩ <ev>

Endif

Fig. 5.  ASM Rule describing a call towards a guarded operation in an active object 

Passive objects 
Passive objects do not own execution threads; they may not have state machines and 
they do not have an input queue. There is however an implicit state associated to each 
passive object, this state given by the value of each attribute. The operations of a 
passive object execute on (one of) their caller’s thread. A cascade of calls of passive 
class operations are all executed on the caller thread that initiated this call chain.. 

ASM Agents 
During the execution we only have ASM agents corresponding to active objects. Each 
active object has a main thread that manages the event receipt, several threads 
corresponding to the ongoing operation execution and a (set of) thread(s) 
corresponding to the active object state machine, that we don’t detail here). The agent 
corresponding to an operation executes the rule that corresponds to the main method 
of the operation. If this method is described using actions, then the ASM program rule 
of the agent that executes the operation is obtained from the action specification. If 
the operation’s method is described using other means (state machine or other), then 
the specification of the behavior is outside the scope of our semantics definition, and 
we will consider that the agent executes a void program rule. 

For each particular kind of action we define an ASM macro that gives its run-time 
semantics. In addition, we have a special rule that describes the action execution 
initialization and is executed right after an action starts to execute. It initializes all the 
functions related to the specific action. 

Capturing model specific information through initialization 

Until now, we have presented the ASM elements that describe the static an dynamic 
semantics of UML. These elements are shared by all ASMs corresponding to UML 



models3. We discuss here on the place of the UML model specific part in the 
semantics framework (see Fig. 1.). 

The model specific part consists in specifying the content of each ASM domain at 
ASM start-time, using model specific information (e.g. populate the domain of 
classes, associations, attributes, action specifications, etc). The domains that 
correspond to run-time entities will be all empty at initialization time. 

The initialization of names corresponding to dynamic behavior is done using 
initially integrity constraints. However, the system behavior initialization is a 
dynamic process and integrity constraints are not enough to capture its characteristics. 

UML offers no standard mechanism for describing the system initialization. 
Various techniques could be imagined for capturing this information in UML (object 
diagrams, particular collaboration diagrams, deployment diagrams, etc.). However, as 
none of them is generally accepted, we are aware that the specification of the system 
initialization remains arguable. We assume that the UML model has a special object 
diagram, we call it Initial that gives the snapshot of the system at start time. This 
object diagram contains the objects and links that shall exist initially and the first 
operation calls. 

Each ASM corresponding to an UML model, starts with an initialization phase. 
During this phase, a single ASM agent exists, we call it Creator, and this agent 
performs the following actions (in this order): 
− it creates the objects described in the Initial object diagram. We do not add these 

objects directly to the ASM because the object creation may be followed by 
constructor operation call. Due to their definition, the agents corresponding to 
active objects are automatically created; 

− it creates the links that were not created as a result of the object creation; 
− it synchronizes the values of ASM names with the values of the fields in the object 

diagram; 
− it creates call events corresponding to each call specified in the object diagram. 

These calls events will have the sender field unspecified; 
− it dies. 

When the Creator finishes execution, the system is in the status specified by the 
object diagram, and the call events corresponding to the initial calls are initiated. 
After the death of the creator the ASM behavior follows the rules described in the 
previous sections. The ASMs corresponding to UML models are assumed to live 
forever. However, as soon as no more active objects exist (i.e. no running agent), the 
execution of the ASM may be considered completed. 

4 Related efforts 

A lot of effort was devoted to the goal of having a precisely defined semantics for 
UML. First, all UML tools that offer more than editing capabilities embed precisely 
defined semantics, without making it explicit. Code generators give semantics to 

                                                           
3 some optimizations may be imagined to eliminate the ASM names and rules irrelevant in the 

concrete case of the ASM corresponding to a precise UML model 



classes, attributes, operations, etc, in terms of the target language. The semantics 
embedded in the code generators is incomplete, as in general only a part of the UML 
specification is translated to code. Symbolic executors (simulators) generally have a 
more complete semantics, which is embedded in the implementation of the simulator 
or it is expressed in the simulator language. In the case of UML tools, the semantics is 
not explicitly defined, and, in general, it is hidden in the tool implementation. 

The academic tools using UML specifications, provide sounder semantics 
foundation, in general by focusing on particular aspects, e.g. USE [21] focuses on 
OCL constraints/ invariants, UMLAUT [12] focuses on formal validation based on 
protocol validation. 

Other efforts to define precise semantics, also issued from the pragmatic need to 
fill the gap between advanced modeling concepts (such as state machines) and real 
implementation, are represented by the attempt to transform state machines into 
executable specifications. Notable results are described in [11]. 

The first attempts of formalizing UML date back in 1997 [1], when authors argued 
the need for a UML formal foundation based on a mathematical system model. This 
work is followed by more elaborated formalization efforts. The most notable of them 
are those done by the pUML group [7, 8], oriented towards formalizing UML in Z.  

[9] formalizes UML state machines using graph transformation systems. 
Other formalization attempts use ad-hoc semantics background, such as the 

collaboration semantics presented in [20], and of the action semantics base semantics 
[18]. 

Some UML formalization efforts using ASM already exist: [3] formalizes UML 
activity diagrams, by adapting ASM to natively support activity diagrams; [2] 
formalizes UML state machines by extending the basic ASM, with some new 
constructs to cover UML state machines specific features; [4] defines an ASM based 
toolset, focused on the state diagrams. These approaches disconnect state machines 
/activity diagrams of the rest of the language, and they do not consider all UML 
concepts (associations, inheritance, etc.). 

[16] presents preliminary efforts of our study with focus on the static part. 

5 Conclusions and future directions 

We have used ASM to formalize the semantics of parts of UML that offer relevant 
information for the behavior description. Namely, we have described the semantics of 
classifier, class, data, expression, association, inheritance, operation, attribute, action 
description, and their run-time counterparts. The only operational behavior 
mechanism that we do not formalize is the state machine. 

Our formalization approach consists in giving a precise method to obtain the ASM 
that corresponds to each UML model. 

All the ASMs corresponding to UML models have a common part composed of: 
names (domains and functions) and constraints obtained from the UML meta-model, 
constraints corresponding to the WFRs from the UML specification and some 
additional integrity constraints; names (domains and functions), constraints and 
transition rules from the object model, action and operation run-time behavior, 



definitions of the set of agents, and functions that give their behavior, from the object 
model. 

This is the part that actually gives the semantics of UML. Each UML model can be 
fed into this semantics framework, to obtain the complete semantics description of 
each model. From a UML model we initialize the ASM by adding: initially 
constraints for the content of ASM names corresponding to meta-model entities 
obtained from the UML model. From the initial list of objects existing at 
initializations, obtained from the model’s object diagram that gives the initialization 
status of the object. The same object diagram servers as basis for the definition of a 
creator agent that completes the initializations and creates the initial call events that 
start the system execution. 

The research that resulted in the definition of UML semantics has various benefits: 
it fulfilled our initial goal, which was to define a precise semantics for actions, it 
proves that the actions defined in the previous section can be integrated not only into 
the UML meta-model, but more generally in the UML behavior framework, it 
unambiguously defines the semantics of UML constructs, it better underlines the 
relationships between various UML entities, it uncovers some UML inconsistencies 
and missing; it provides a complete UML object model, it uncovers issues to be 
treated when building UML-based tools, even outside the scope of this semantics, it 
proves that the goal of having precise definitions of UML ending into symbolic 
executions is realistic. 

We see several directions on which this work could be continued in the future. 
First, we plan to integrate our semantics with an ASM tool. For the moment we have 
only managed to feed parts of our semantics and simulate very simple models. We 
intend to go forward on this direction. Another natural extension consists in adding 
the state machine semantics. 

Another natural continuation of this work consists in taking into account more 
UML diagrams: check the run-time compliance of the behavior with UML sequence 
charts. 

Currently a major revision of UML is ongoing, several proposals being submitted 
[22]. We plan to adapt our semantics to the new standard, as soon as this will be made 
available. For the static part this will be done almost automatically. For the dynamic 
part, we will have to review our semantics and check for its consistency with the new 
standard. 
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