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Abstract. We define a subset krtUML of UML which is rich enough
to express all behavioural modelling entities of UML used for real-time
applications, covering such aspects as active objects, dynamic object
creation and destruction, dynamically changing communication topolo-
gies in inter-object communication, asynchronous signal based commu-
nication, synchronous communication using operation calls, and shared
memory communication through global attributes. We define a formal
interleaving semantics for this kernel language by associating with each
model M ∈ krtUML a symbolic transition system STS(M). We outline
how to compile industrial real-time UML models making use of generali-
sation hierarchies, weak- and strong aggregation, and hierarchical state-
machines into krtUML, and propose modelling guidelines for real-time
applications of UML. This work provides the semantical foundation for
formal verification of real-time UML models described in the companion
paper [11].

1 Introduction

The establishment of a real-time profile for UML [25], the proposal for a UML
action language [24], and the installation of a special interest group shared be-
tween INCOSE and OMG to develop a profile for UML addressing specification
of real-time systems at the system-level all reflect the pressure put on standard-
isation bodies to give a rigorous foundation to the increasing level of usage of
UML to develop hard real-time systems.

Its increased use also for safety critical applications mandates the need to
complement these modelling oriented activities with an agreement on the formal
semantics of the employed modelling constructs, as a prerequisite for rigorous
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206/7-3 and by the Information Society DG of the European Commission within the project
IST-2001-33522 OMEGA (Correct Development of Real-Time Embedded Systems).
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formal analysis methods, such as formal verification of compliance to require-
ments. This need has been perceived by the research community, leading to a
substantial body of formalisation of various subsets of UML, discussed in detail
in Section 5 of this paper. The precise UML group has in a series of papers [5, 6, 7]
been proposing a meta-modelling based approach, which however lacks the ca-
pability to address dynamics aspects at the level of detail required for formal
verification. Approaches based on translation into existing formalisms, such as
e.g the π-calculus [26, 27], ASMs [23], CASL [30], Object-Z [18] fall short of cov-
ering the rich range of behavioural modelling constructs covered in this paper.
Closest to our work addressing the intricacies of understanding active objects
are [29, 30].

Our approach takes into account functional aspects of real-time systems,
considering discrete time model with two levels of granularity. In this paper we
focus our investigation on the semantic foundation of such critical features of
real-time applications as concurrency (including the specification of the time
points for interferences) and two types of inter-object communication — syn-
chronous, via operation calls, and asynchronous, via signal event emission. The
described approach benefits from numerous discussions with industrial users em-
ploying UML tools for the development of real-time systems, e.g. the partners
of the IST projects Omega 1 and AIT-Wooddes 2. The IST project Omega has
developed an agreed specification rtUML of those modelling concepts from UML
required to support industrial users in their application development (Deliver-
able IST/33522/WP1.1/D1.1.1, [10]), subsuming such concepts as inheritance,
polymorphism, weak and strong aggregation, hierarchical state machines, rich
action language, active, passive, and reactive objects, etc., taking into account
detailed issues such as navigability, visibility, changeability and ordering of as-
sociation end-points, and allowing unbounded multiplicity of these.

We propose a two-stage approach to give a formal semantics to rtUML: A
precompilation step translates rtUML models into a sufficiently compact sub-
language krtUML, eliminating the need at the kernel level to address the various
facets of associations, inheritance, polymorphism, and hierarchical state-machi-
nes. We then give a formal semantics of krtUML, using the formalism of symbolic
transition systems [22]. In this semantic framework, the state-space of the tran-
sition system is given by valuations of a set of typed system variables, and initial
states and the transition relation are defined using first-order predicate logic. We
show how to capture a complete snapshot of the dynamic execution state of a
UML model, using unbounded arrays of object configurations to maintain the
current status of all objects, and a pending request table modelling the status of
all submitted, but not yet served operation calls. Object configurations include
information on the valuation of the object’s attributes, the state-configuration
of it’s state-machine, as well as the pending events collected in an event-queue.

Due to space restrictions, this paper focusses on the definition and formal
semantics of krtUML, and only sketches some ideas of the precompilation phase.

1 IST-2001-33522, http://www-omega.imag.fr/index.php
2 IST-1999-10069, http://wooddes.intranet.gr
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We refer the reader to [10] for a full description of this step, as well as for the
specification of rtUML.

The paper is organized as follows. Section 2 gives a formal definition of the
constituents of a krtUML model. Section 3, the heart of this paper, develops
the STS-based semantics, motivating and introducing in consecutive sections
the system variables spanning the state-space of the transition systems, and the
transition relation itself. Section 4 highlights aspects of the pre-compilation step,
addressing inheritance and aggregation. Section 5 discusses related work.

2 The krtUML Language

In developing krtUML, we strived to maintain in purified form those ingredients
of UML relating to the interaction of active objects. Intuitively, an active object
(i.e., an instance of an active class) is like an event-driven task, which processes
its incoming requests in a first-in-first-out fashion. It comes equipped with a
dispatcher, which picks the top-level event for the event-queue, and dispatches
it for processing to either its own state-machine, or to one of the passive reactive
objects associated with this active object, inducing a so-called run-to-completion
step. We generalize this concept in Section 4 by proposing to group one active
object and a collection of passive server objects into what we call components.
3 Within a component, all passive objects delegate event-handling to the one
active object of the component; pre-compilation will capture this delegation re-
lation by allowing to refer through my ac to the active object responsible for
event-handling of a passive object. While the semantical model is rich enough to
support communication through shared attributes, operation calls, and signals,
we restrict our communication model so that all inter-component communica-
tions are purely asynchronous, i.e. via signal events.

Our kernel language thus still caters for the difference between active and
passive objects. All objects are assumed to be reactive, that is their behaviour
can be made dependent on the current state of the system. We support so-called
triggered operations, i.e. operation calls, whose return value depends on the cur-
rent state of the system, as distinguished from what we call primitive operations,
the body of which is defined by a program in the supported action language.
Since primitive operations only involve services of an object within the same
component, pre-compilation can eliminate all calls to primitive operations by
inlining (assuming, that the call-depth of primitive operations is bounded). In
contrast, for triggered operations the willingness of the object to accept a partic-
ular operation call in a given state is expressed within the state-machine, by la-
beling transitions emerging from the state with the operation name as triggering
guard, in the same style as the willingness of the object to react to a given signal
event is specified by using this signal as triggering guard. Reflecting the wish
to make the return value of triggered operations dependent on the object state,

3 In this paper, we use the notion of components which is a restriction of the more gen-
eral concept from the standard UML. Namely, we consider only a kind of components
containing exactly one active object.
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its “body” is “spread out” over the state-machine itself: the acceptance of a call
will induce a run-to-completion step, hence the transition-labels passed during
this run-to-completion step determine the response for this particular invocation
of the triggered operation. Pre-compilation will have flattened the hierarchical
state-machines of rtUML into the flat state-machines considered in our kernel
language. It will also have split compound transition annotations, hence within
the kernel language, only atomic actions and triggering guards (signal/operation
names possibly with conditions) are allowed as labels of transitions.

We now elaborate on the formal definition of krtUML models. Note that
the different ingredients are mutually dependent, hence we collect them in one
formal definition.

Definition 1 (krtUML model). A krtUML model

M = (T,F,Sig, <, C, croot, A)

consists of the following elements:

• T ⊇ {void, IB, IN}: A set of basic types comprising at least booleans and
natural numbers.

• F: A set of typed predefined primitive functions.

• Sig: A finite set of signals. Every instance of a signal is called signal event,
or event for brevity.

• < ⊂ Sig×Sig: A generalisation relation on signals, i.e. the transitive closure
<+ is irreflexive, where ev1 < ev2 denotes that ev2 is a generalisation of ev1.
In the following, we use ≤ to denote the reflexive transitive closure of <.

• C: A finite, non-empty set of classes. A class

c = (c.isActive, c.attr, c.ops, c.sm)

consists of:

- c.isActive: A predicate. Class c ∈ C is called active iff c.isActive = true.

- c.attr: A finite set of typed attributes, which may not be of type void.

- c.ops: A finite set of typed triggered operations.

- c.sm: A c-state-machine as explained in (v) below in terms of c-actions
over c-expressions.

Each class contains two specific implicit attributes (introduced by the pre-
processing): self ∈ c.attr keeping the reference to the object itself, and my ac ∈
c.attr specifying the event-handling object associated with class c.

• croot ∈ C: The class of the root object (serving to specify system initialisation
as defined in Definition 7).

• A ⊂ C: A subset of active classes called actors and used to denote external
objects (part of the environment).
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krtUML allows for some set of base types T, as well as a set F of functions oper-
ating on them, including, in particular, booleans and natural numbers together
with all logical and arithmetical operators. Signals as well as operations may have
parameters of well-defined types. Note that we support explicitly generalisation
hierarchies on signals (while generalisation hierarchies on objects are eliminated
during pre-compilation). We now elaborate on the elements of krtUML model
defined so far, and start by defining the supported types. Here we clear distin-
guish between base types and reference types (visible on the UML level), as well
as a third category of types catering for implicit attributes representing asso-
ciation end-points, which typically hold a number of references depending on
their multiplicity. By choosing to type these uniformly with functions from the
naturals to classes, we cater for unbounded multiplicity. Operationally, we hence
view such implicit attributes as unbounded arrays, with each index pointing to
an associated object of a given class, or containing a nil-pointer.

Definition 1 (Continued)

(i) Typing: A krtUML model M defines the set of types

T(M) =df T ∪ TC ∪ Tas

where TC =df {Tc | c ∈ C} is the set of reference types and
Tas =df {IN → Tc | c ∈ C} the set of association types, which will be used
to represent all kinds of associations described in [10] (i.e., composition,
aggregation and neighbour).

For each type τ ∈ T(M), we assume existence of a designated element nilτ ∈
τ as a default value.

We use ‘type’ to denote the type of attributes, functions etc. as follows:

• For each class c ∈ C and each attribute a ∈ c.attr, type(a) ∈ T(M)
denotes the type of a ∈ c.attr,
where type(self) = Tc ∈ TC and type(c.my ac) ∈ TC.

• For each class c ∈ C and each triggered operation op ∈ c.ops, typepar(op)
= T1 × · · · × Tn denotes the parameter type where Ti ∈ T(M) is the type
of the i-th parameter and typer(op) ∈ T(M) denotes the type of the reply
value (typer(op) = void if op does not yield a return value). The type of
op is defined as type(op) = typepar(op) → typer(op).

• For each f ∈ F, typepar(f) = T1 × · · · × Tn denotes the parameter type
where Ti ∈ T(M) is the type of the i-th parameter and typer(f) denotes
the value type of f . The type of f is type(f) = typepar(f) → typer(f).

• For each ev ∈ Sig, typepar(ev) = T1×· · ·×Tn denotes the parameter type
of ev where Ti ∈ T(M) is the type of the i-th parameter.

We next introduce the expression language, supporting navigation expressions,
accessing objects through association end-points, and closing this under appli-
cation of base-type functions (including equality and boolean operations). Ex-
pressions are terms defined in the scope of a class that can be used in transition
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guards orprimitive actions of this class.

Definition 1 (Continued)

(ii) Expressions: For a class c ∈ C, a c-expression ‘expr’ is defined inductively
as follows:

• Navigation expression: expr ::= r.a,
where r ∈ c.attr with type(r) = Tc0

∈ TC and a ∈ c0.attr. We set
type(expr) =df type(a). Note, that we only consider “flat” navigation ex-
pressions in krtUML, where r can also refer to the object itself (if r =
self).

• Association access: expr ::= expr1[expr2],
where expr1 and expr2 are c-expressions type(expr1) = (IN → Tc′) ∈ Tas

and type(expr2) ∈ IN. We set type(expr) =df Tc′ .

• Function application: expr ::= f(expr1, . . . , exprn),
where expr1, . . . , exprn are c-expressions, f ∈ F, and type(expri) matches
the type of the i-th parameter of f , 0 < i ≤ n. We define type(expr) =
typer(f).

In the following definition of c-guards, c-actions and c-state-machines, ‘expr’,
‘expr1’, and ‘expr2’ denote c-expressions.

Guards can be just boolean expressions, or express the willingness to accept a
signal event or an operation call, possibly conjoined with a boolean condition.

Definition 1 (Continued)

(iii) Guards: For a class c ∈ C, a triggering guard to be used in the state-ma-
chine of class c ∈ C, c-guard for short, is one of the following:

• Signal trigger: ev[expr], where ev ∈ Sig and type(expr) = IB.

• Call trigger: op[expr], where op ∈ c.ops and type(expr) = IB.

• Condition: [expr], where type(expr) = IB.

We support a rich action language, allowing for object-creation and destruction,
operation calls, event emission, and assignments of attributes and association
end-points. The expression passed in an object creation is intended to pass the
identity of the active-object responsible for event-handling. Reply actions serve
to define the return value of a triggered operation.

Definition 1 (Continued)

(iv) Actions: A (primitive) action to be used in the state-machine of class c ∈ C,
c-action for short, is one of the following:

• Object creation: r.a := createc′(expr),
with r ∈ c.attr, type(r) = Tc0

∈ TC , a ∈ c0.attr and type(a) = Tc′ ∈ TC,
and type(expr) = type(c′.my ac).
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• Object creation (into association place): r.a[expr1] := createc′(expr2),
with r ∈ c.attr, type(r) = Tc0

∈ TC , a ∈ c0.attr,
type(a) = (IN → Tc′) ∈ Tas, type(expr1) = IN, and
type(expr2) = type(c′.my ac).

• Attribute assignment: r.a := expr,
with r ∈ c.attr, type(r) = Tc0

∈ TC , a ∈ c0.attr, and type(a) = type(expr).

• Association place assignment: r.a[expr1] := expr2,
with r ∈ c.attr, type(r) = Tc0

∈ TC , a ∈ c0.attr, type(expr1) = IN,
type(a) = (IN → Tc′ ∈ Tas), and type(expr2) = Tc′ .

• Event emission: r.send(ev, expr1, . . . , exprn),
with r ∈ c.attr and type(r) ∈ TC, ev ∈ Sig,
and (×n

i=0type(expri)) = typepar(ev).

• Operation call (ignoring reply value): r.call(op, expr1, . . . , exprn),
with r ∈ c.attr, type(r) ∈ TC, op ∈ type(r).ops,
and (×n

i=0type(expri)) = typepar(op).

• Operation call (assigning value): r.a := r′.call(op, expr1, . . . , exprn),
with r ∈ c.attr, type(r) = Tc0

∈ TC , a ∈ c0.attr, and r′ ∈ c.attr,
type(r′) ∈ TC, op ∈ type(r′).ops, and (×n

i=0type(expri)) = typepar(op),
and type(a) = typer(op).

• Operation call (assigning value into association place):
r.a[expr0] := r′.call(op, expr1, . . . , exprn),
with r ∈ c.attr, type(r) = Tc0

∈ TC , a ∈ c0.attr, and r′ ∈ c.attr,
type(r′) ∈ TC, op ∈ type(r′).ops, and (×n

i=0type(expri)) = typepar(op),
and type(a) = (IN → c′) ∈ Tas, type(expr0) = IN, and typer(op) = c′.

• Setting reply value: replyτ (expr), with τ ∈ T ∪ TC and type(expr) = τ .

• Object destruction: destroy(expr), with type(expr) ∈ TC .

Triggering Guards and Actions appear as decorations of transitions of the state-
machine of a class. We assume a designated destruction state. Pre-compilation
will extend the user-defined state-machine by pre-fixing the initial state with
a sequence of transitions modelling constructor actions, while the destruction
state is the unique entry point into a section added by pre-compilation modelling
destructor-code. Pre-compilation also transfers hierarchical statecharts into flat
state-machines, each extended by a destruction state having no incoming tran-
sitions.

Definition 1 (Continued)

(v) State-machines: A c-state-machine for a class c ∈ TC is a tuple

c.sm = (c.Q, c.q0, c.qx, c.tr)

where
• c.Q is a finite set of states.

• c.q0 ∈ c.Q is the initial state.
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• c.qx ∈ c.Q is the destruction state, which is used to mark the beginning
of the destructor’s actions.

• c.tr ⊆ c.Q × ({γ | γ is a c-guard or c-action}) × c.Q is the transition
relation. �

We will use krtUML to denote the set of all krtUML models.
Note that on the krtUML level, there is intentionally no inheritance relation

on classes, since for each class c ∈ C, inheritance is explained by the introduction
of uplink - and downlink -neighbour associations uplinkc′ , downlink ∈ c.attr for
each superclass c′ of c in the preprocessing step. The uplink-association is used
to model static polymorphism, whereas downlink-association allows to capture
dynamic one.

Further note that association access is restricted to accessing a single index,
i.e. on the krtUML level, there are no operations like iteration over associations
or adding references. We assume that such operations are also explained in terms
of primitive actions by the preprocessing.

The identification of actors is not considered necessary from a semantical
point of view, since actors should be treated as every other active class.

But the information whether an object is an actor instance can be exploited
in formal verification: these objects need not necessarily be encoded like ordinary
objects but can be interpreted as an assumption about environment behaviour,
i.e. the expected sequences of input stimuli.

In the following, we assume that the preprocessing step as outlined in Sub-
section 4.1 establishes the following set of requirements regarding the sets of
attributes and the state-machines of a krtUML model, which we rely on in Sec-
tion 3 when explaining the semantics.

(i) All attribute and triggered operation names of all classes are pairwise dif-
ferent, for example qualified by a class name like c::a, and all states of all
state-machines are pairwise different.

(ii) For each class c ∈ C, c.attr contains the attribute c::my ac to store the
reference to the responsible active object such that c::my ac is of type Tc′

and c′.isActive = true.
(iii) Values of the implicit attributes c::self and c::my ac are assigned once at

the initialization of the corresponding object and do not change during the
life-time of the object.

(iv) For each triggered operation op ∈ c.ops, c ∈ C, there are attributes c::oppi
∈

c.attr, 1 ≤ i ≤ n to hold local copies of the parameters,
typed s.t. (c::opp1

, . . . , c::oppn
) = typepar(op)

(v) For each ev ∈ Sig which c ∈ C is willing to receive, i.e. there is a transition
(q, ev[expr], q′) ∈ c.tr, there are attributes c::evpi

∈ c.attr, 1 ≤ i ≤ n to
hold local copies of the signal parameters, typed s.t (c::evp1

, . . . , c::evpn
) =

typepar(ev).



Understanding UML 9

3 krtUML Semantics

We will give the semantics of krtUML in terms of symbolic transition systems,
proposed in [22] under the name Synchronous Transition Systems. Separate sub-
sections derive from types of krtUML models the type structure of related sym-
bolic transition systems, and introduce the system variables required to represent
a snapshot in the dynamic execution of a krtUML model. We then elaborate the
way snapshots can evolve, defining for each of the possible cases a transition
predicate. Finally, we define the predicate characterizing initial snapshots, and
collect all pieces of the transition relation into a full predicative definition of
the transition relation, leading to a definition of the symbolic transition system
associated with krtUML model.

3.1 Symbolic Transition Systems

We first introduce the semantic model of symbolic transition systems, which
allow for a purely syntactical description of a transition system by first-order
logic predicates over a set of typed system variables.

Definition 2 (STS). A symbolic transition system (STS) S = (V, Θ, ρ) con-
sists of V, a finite set of typed system variables, Θ, a first-order predicate over
variables in V characterizing the initial states, and ρ, a transition predicate,
that is a first-order predicate over V, V ′, referring to both primed and unprimed
versions of the system variables (their current and next states). �

An STS induces a transition system on the set of interpretations of its vari-
ables as follows.

Definition 3 (Runs of an STS). Let S = (V, Θ, ρ) be an STS and T the set
of types of variables in V. Let Dτ be a semantic domain for each τ ∈ T.

(i) A snapshot

s : V →
⋃

τ∈T

Dτ

of S is a type-consistent interpretation of V, assigning to each variable v ∈ V
a value s(v) over its domain. Σ denotes the set of snapshots of S.

(ii) A snapshot s ∈ Σ inductively defines the value [[expr]](s) for first-order predi-
cates ‘expr’ over V and the value [[expr]](s, s′) for first-order predicates ‘expr’
over V, V ′, where s provides the interpretation of unprimed and s′ the inter-
pretation of primed variables in ‘expr’.

(iii) A snapshot s ∈ Σ is called initial, iff [[Θ]](s) = true.

(iv) Let s, s′ ∈ Σ be snapshots of S. Snapshot s′ is called S-successor of s, iff
[[ρ]](s, s′) = true.

(v) A computation, or run, of S is an infinite sequence of snapshots
r = s0 s1 s2 . . . , satisfying the following requirements:



10 Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva

• Initiation: s0 is initial.

• Consecution: Snapshot sj+1 is an S-successor of sj , for each j ∈ IN0.

(vi) The set of all computations of S is denoted as runs(S). We use r(i) to denote
the i-th snapshot of a run r ∈ runs(S) and

r/i =df r(i) r(i + 1) r(i + 2) . . .

to denote the infinite suffix starting at r(i), i ∈ IN0. �

3.2 System Variables for the krtUML Semantics

We motivate our choice of types and system variables using snapshots related
to the Automated Rail Car System described in [15], a model of autonomous
rail-bound cars which transport passengers between terminals and which adhere
to a simple arrive- and departure protocol to allocate and de-allocate platforms
inside the terminal. We refer the reader to [15] for details.

Car

Cruiser

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

self

status

5

exe

itsCruiser
speed 27

(Cruiser,3)

(dest1,ArrivAck,par1)

(dest2,ev2,par2)

(dest3,ev3,par3)

sc

ac

eq
ds ds

system configuration object configuration

Fig. 1. System Configuration: A variable of type Tsconf contains one object config-
uration for every object identifier in OC . The example of an object configuration oconf
for the object (Car, 5) is shown enlarged.

Figure 1 depicts the way, how an object-configuration is captured. It shows
enlarged the entry of an object of class Car, currently executing. The current
state-machine configuration is illustrated by a state-machine, where in fact only
the current state is stored. An object onfiguration not only gives the current
valuation of all its attributes as well as its current state configuration, but also
maintains the current object status (elaborated below), the event-queue (for
active objects only), and a dispatcher status (for active objects only) used to en-
force a single thread of control within the objects grouped into one component.
The semantic entity representing a single class is a (potentially unbounded) ar-
ray of object configurations, with each entry corresponding to a single instance
of this class. The object status reflects the life-cycle of an object (see Figure 2).
Prior to creation, objects are perceived as being dormant. Creation of a new
object instance will pick a dormant index of the corresponding class, and awake
the object to realities of life. During life, objects become suspended when wait-
ing for completion of an operation call, and idle, (except for the special case
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discussed below) when becoming stable, i.e. when a run-to-completion step ter-
minates. This happens when reaching a state, where all outgoing transitions are
either guarded by signal triggers (of the form ev[expr]) or call triggers (of the
form op[expr]), or conditions (of the form [expr]) which are evaluated to false.
In the particular case of accepting destruction, the object status will switch to
dying, remaining in this status until its last run-to-completion step induced from
the objects’ destructor is finally completed. From then on, the object status will
remain dead. Note, that destruction of an aggregate object (w.r.t. the compo-
sition association, defined in rtUML) induces destruction of all its parts, hence
dying may be a long and painful process. Our semantics thus allows to observe
nastities such as sending events to dying objects, as well as detecting dangling
references.

destroycreate
destruction
completed

take event or
accept trig. op.

queue empty
and no pen-
ding calls

locally
enabled

transition

become
stable

pick up
result

initiate trig.
op. call

dormant

idle

executing

suspended

dying

alive

dead

Fig. 2. Object life-cycle.

For the rest of the current section, let M = (T,F,Sig, <, C, croot, A) be a
krtUML model.

We now define for the semantic types employed in the definition of the associ-
ated symbolic transition system, as well as the semantic domain of all semantic
types. The type-system of semantic types subsumes all types of the krtUML
model.

Definition 4 (Object Reference Types and Domains). For each basic type
τ ∈ T, we assume the existence of a corresponding semantic type Tτ with domain
Dτ .

For each type Tc ∈ TC , we denote by Oc or TTc
the corresponding seman-

tic type and choose DOc
=df {c} × IN as its domain. We call OC with domain

DOC
=df

⋃

c∈C DOc
, the object reference type resp. domain. For each object type

Oc, we assume existence of a designated element nilc ∈ DOc
to serve as a default

value.

For each each association type τ = (IN → Tc) ∈ Tas, Dτ =df (IN → DOc
) is

the domain of Tτ . �

We now define the semantic type of system configurations and its associated
domain, by first defining the semantic type of object configurations.



12 Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva

Definition 5 (Object and System Configuration).

(i) An object configuration oconf = (status, ac, sc, eq, ds) consists of the follow-
ing elements:

• An object status ‘status’ of type Tobjstatus with associated semantic do-
main

DTobjstatus
=df {dormant, idle, executing, suspended, dying, dead}.

• An object attribute configuration ‘ac’ of type Tac =df

⋃

c∈C

(c.attr → TT(M)).

• An object state-machine configuration ‘sc’ of type Tsc with associated

semantic domain DTsc
=df

⋃

c∈C

c.Q.

• The event queue eq of type Teq =df T
∗
eqe, i.e. a sequence of entries

(dest, ev, par) of type Teqe =df OC × Sig ×
⋃

ev∈Sig

Ttypepar(ev)
.

For an event-queue entry, ‘dest’ denotes the destination, ‘ev’ the event
type (i.e. signal name), and ‘par’ the event parameters. We will use ε
to denote empty event queue.

• A dispatch reference ds of type Tds =df OC , i.e. a reference to some object
of any class which is used to denote the object currently processing an
event.

Thus the type of an object configuration of M is

Toconf(M) =df Tobjstatus × Tac × Tsc × Teq. × Tds

(ii) The type of a system configuration is Tsconf(M) =df OC → Toconf(M).

(iii) We will call a component to be a set Cm(o) = {o′|o′.my ac = o} of objects
assigned to the same event dispatcher o. �

The symbolic transition system uses the variable sconf : Tsconf to maintain
the object-configuration of all objects of M . Note that, in general, the assignment
of an event dispatcher to a reactive object can be user defined. In [10], a default
assignment is given derived from the composition association.

Car

Cruiser

. . .

. . .

. .
 .

. .
 .

. .
 .

op

status

dest

engage

pending

params
result nil

nil

(Cruiser,3)

pending request table pending request table entry

Fig. 3. Pending Request Table: The pending request table is a system variable of
type Tprt. It contains one entry for every object identifier in OC .
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We collect the status of all pending operation calls within a pending request
table. An example on Figure 3 shows enlarged the entry for calls from an object
of class Car. Currently the call of triggered operation engage for a Cruiser is
pending. Here we exploit the fact, that all objects become suspended on calling
an operation. We can thus maintain the status of all operation calls in a table
indexed by sender objects resp. actors. Each entry in the pending request table
maintains the identity of the receiver, the name of the requested operation, the
list of parameters, a result-field, and status information. The life-cycle of an
entry in the pending request table is depicted in Figure 4. Whenever the object
owning the entry emits a new operation call, the status of the entry switches to
pending. It will remain in this status until the receiving object is willing to serve
the call, which causes the status to switch to busy. Once the run-to-completion
step induced from accepting the call is terminated, the result of the call is entered
into the result field of the entry, and its status changes to completed. This will
allow the calling object to pick up the result and resume computation, causing
the status of the entry to become unused.

caller calls
trig. op.

callee accepts
call

caller
picks up result

callee becomes
stable

unused pending busy completed

Fig. 4. Life-cycle of a triggered operation call.

Definition 6 (Pending Request Table).

(i) A pending request table entry opreq = (dest, op, status, result, params) main-
tains:

• The receiver of a triggered operation call ‘dest’ of type Tdest with asso-
ciated semantic domain DTdest

=df OC .

• The triggered operation identifier ’op’ of type Top with associated seman-

tic domain DTop
=df

⋃

c∈C

c.ops.

• The triggered operation status ’status’ of type Topstatus with semantic
domain

DTopstatus
=df {unused, pending, busy, completed}.

• The result (or reply) ‘result’ of type Tres with associated semantic do-
main

DTres
=df

⋃

c∈C
op∈c.ops

typer(op).

• The parameters ‘params’ of type Tpar with associated semantic domain

DTpar
=df

⋃

c∈C
op∈c.ops

typepar(op).
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Thus the type of a pending request table entry is

Topreq(M) =df Tdest × Top × Topstatus × Tres × Tpar.

(ii) The type of the pending request table is Tprt(M) =df OC → Topreq(M). �

The symbolic transition system uses the variable prt : Tprt to maintain the
operation requests of all objects of M .

Furthermore, we need a boolean flag sysfail, which is used to indicate an
undefined state of the system if e.g., it is tried to read the attribute of object
reference nil or if the type of the reply action does not match the type of the
currently processed triggered operation. Performing some arithmetic computa-
tions can also raise this flag in failure situations (e.g., division by 0). Initially,
sysfail is set to false and it remains set, once it changed to true.

3.3 The Transition Predicate

Intuitively, there is a transition between two snapshots s, s′ if there exists exactly
one object o ∈ OC whose configuration changes by one of the following reasons:

• Object o is idle and an event is dispatched to it by its active object or an
event with destination o is discarded since it is not enabled in o’s state-ma-
chine. (Coarse-granularity flow of control is kept by elements ds of active
objects’ configurations.)

• Object o is idle and accepts a triggered operation call. (Fine-granularity flow
of control is kept by elements dest of the pending request table.)

• Object o is executing or dying, unstable, and takes a transition of its state-
machine and thereby executing an action. (No changes in the flow of control.)

• Object o is suspended and picks up the result of a triggered operation call
which has been completed by the callee. (Fine-granularity flow of control
kept by dest in prt.)

The system may remain in snapshot s if no object is executing (implying that
pending request table is empty) and all event queues are empty.

In the following, we formalize each of the above conditions separately as first-
order logic predicates which are then used to construct the transition predicate
of the semantics S(M).

For brevity, we use the following abbreviations for o ∈ OC in the definitions
of predicates over sconf and prt:

• o.status ≡df sconf(o).status and analogously for sc, ds, eq.

• o.a ≡df sconf(o)(a), i.e. the value of attribute a.

• o.a.b ≡df sconf(sconf(o)(a))(b), for attributes b of reference type.

• For an event or operation parameter tuple e, we use o.ev′p := e to denote
simultaneous assignment of the i-th components of e to their corresponding
attributes evpi

in o.



Understanding UML 15

A primed abbreviation indicates that the primed system variable is to be used,
for example o.a′ ≡ sconf′(o).a.

For an event-queue q = e1 e2 . . . en ∈ DTeq
we introduce the following abbre-

viations:

• head(q) =df e1 denotes the first entry of the queue if q 6= ε.

• tail(q) =df e2 . . . en denotes q with the first entry removed and ε if n < 2.

• enqueue(e, q) =df q e denotes the result of appending entry e : Teqe to q.

For brevity we assume that boolean expressions expr are evaluated to ⊥ if it
is for example tried to read an attribute via a reference with value nil.

Note that in the following incremental definition of the transition predi-
cate, we use an assigment symbol “:=” which has to be processed as expli-
cated in Definition 7 to yield the final transition predicate. Informally, this sym-
bol indicates that there is no difference between the current and next states
of the system variables other than specified explicitly in the sequence of the
“:=”-expressions (or their constituents). We will use ⊕ to denote logical XOR-
operator: a ⊕ b =df (a ∨ b) ∧ ¬(a ∧ b).

We first define for each object o ∈ Oc the predicate stable(o) in the current
system configuration as follows: 4

stable(o) =df ∀ (q, γs, q
′) ∈ c.tr : q = o.sc =⇒

((γs ≡ “ev[expr1]” ∧ sysfail′ := (sysfail ∨ expr1 = ⊥))

∨ (γs ≡ “op[expr2]” ∧ sysfail′ := (sysfail ∨ expr2 = ⊥))

∨ (γs ≡ “[expr3]” ∧ ¬expr3 ∧ sysfail′ := (sysfail ∨ expr3 = ⊥)))

Getting an Event. Formally, an event ev1 with destination o can be dispatched
to o from the event queue of its active object, if no other object of o’s active
object is currently processing an event and if a transition (q, γ, q′) guarded by a
superclass ev of ev1 is enabled, i.e. originating at the current state q (cf. Figure 5):

ρget event =df γ ≡ “ev[expr]” ∧ o.my ac.ds = nil

∧ expr = true ∧ sysfail′ := (sysfail ∨ expr = ⊥)

∧ o.my ac.eq 6= ε ∧ head(o.my ac.eq).dest = o

∧ o.my ac.eq′ := tail(o.my ac.eq)

∧ (∃ ev1 ∈ Sig :

∧ head(o.my ac.eq).ev = ev1 ∧ ev1 ≤ ev

∧ (¬stable(o)′

=⇒ (o.my ac.ds′ := o ∧ o.status′ := executing))

∧ o.ev′p := head(o.my ac.eq).par)
4 Here and later on: γ ≡ “ev[expr]” (γ ≡ “op[expr]” or γ ≡ “[expr]”) means that the

label γ of the current transition (q, γ, q′) is of the form ev[expr] (op[expr] or [expr],
resp.), i.e. a signal trigger (a call trigger or a condition, resp., cf. Definition 1 (iii) ).
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get_event

ev[expr]/

...
status idle

my_ac (c2,i)

ep2 ?
ep1 ?

sc q
...

O=(c1,n)

...
my_ac (c2,i)
eq eqi

ds nil

(c2,i)

eqi

...

(O,ev,ev ,ev , ...)p1 p2

tail(eq )i

sconf(o)

q´

q0

q

ev[expr]/

...
status exec

my_ac (c2,i)

ep2 evp2

ep1 evp1

Sc q´
...

O=(c1,n)

...
my_ac (c2,i)
eq eqi

ds (c1,n)

(c2,i)

...

eqi

tail(eq )i

sconf´(o)

q0

q

q´

Fig. 5. Transition relation: ρget event.

Element o.my ac.ds, when not equal to nil, locks its component for processing
a signal event. It can be released (and the component can start to process the
following event, i.e. new run-to-completion step) only when all computations
within the component are completed.

Note that we exploit the fact, that the syntactic category of boolean ex-
pression used in the definition of krtUML models is subsumed in the expression
language of the first-order logic used to define transition predicates. In particu-
lar the above defined abbreviations apply to expressions of transition predicates
thus providing the intended relation to sconf.

Accepting a Triggered Operation. Object o can accept a triggered operation
call op if a transition (q, γ, q′) with guard op is enabled in the current state q
and some object o1 has called op of o:

ρaccept op =df γ ≡ “op[expr]” ∧ expr = true ∧ sysfail′ := (sysfail ∨ expr = ⊥)

∧ (∃ o1 ∈ OC : prt(o1).dest = o ∧ prt(o1).op = op

∧ prt(o1).status = pending

∧ (¬stable(o)′

=⇒ prt(o1).status′ := busy ∧ o.status′ := executing)

∧ (stable(o)′ =⇒ prt(o1).status′ := completed)

∧ prt(o1).result′ := nil ∧ o.op′p := prt(o1).opp)

Note that an object can call a trigger operation only from an object of the same
component because of the restrictions on the inter-component communication.
Thus, o.my ac.ds′ = o.my ac.ds = o1 during the execution of operations within
one RTC-step (the change of the control between objects at this level of com-
munication is captured by prt(o).dest with prt(o).status ).

Skipping Guards. Object o can take a transition guarded with a boolean
expression only, if the expression evaluates to true:

ρskip guard =df γ ≡ “[expr]” ∧ expr = true ∧ sysfail′ := (sysfail ∨ expr = ⊥)
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Discarding Events. If there is an event for object o in the queue of o’s active
object but o is not willing to accept it, i.e. if no transition with a matching signal
is enabled, then the event is simply discarded:

ρdiscard event =df o.my ac.ds = nil

∧ o.my ac.eq 6= ε ∧ head(o.my ac.eq).dest = o

∧ o.my ac.eq′ := tail(o.my ac.eq)

∧ (∀ (q, ev1[expr], q
′) ∈ c.tr :

(expr = false ∨ ev1 6≤ head(o.my ac.eq).ev)

∧ sysfail′ := (sysfail ∨ expr = ⊥))

Note that triggered operation calls are not discarded, but remain until the callee
accepts the call.

Executing Actions. Object o can execute an action if the current transition
(q, γ, q′) is enabled and annotated with the action. Below we distinguish two
types of actions — operation calls and other actions — treating them in two
separated subformulas. These subformulas will be combined with different con-
texts — conditions on their performance — in the final transition predicate.
An assignment action simply assigns a value to the destination. An event-sending
action causes a new event to be appended to the queue of the destination’s active
object. A reply action causes the parameter value to be written into the reply
field of the pending request table at o1 if o processes the call from another object
o1; otherwise system failure is indicated. A destroy action causes the destina-
tion’s state-machine configuration to be changed s.t. qx is the current state and
the status is “dying”. Then the subsequent steps will execute the actions of the
destructor. Killing a dying or dead object causes a system failure:

ρnon op action =df (γ ≡ “r.a := expr” ∧ (expr 6= ⊥ =⇒ o.r.a′ := expr)

∧ (sysfail′ := (sysfail ∨ o.r = nil ∨ expr = ⊥)))

∨(γ ≡ “r.send(ev, expr1, . . . , exprn)”

∧ sysfail′ := (sysfail ∨ o.r = nil ∨

n
∨

i=0

expri = ⊥)

∧ o.r.my ac.eq′

:= enqueue(o.r.my ac.eq, (o.r, ev, (expr1, . . . , exprn))))

∨(γ ≡ “replyτ (expr)”

∧ [(∃ o1 ∈ OC :

prt(o1).dest = o ∧ prt(o1).status = busy

=⇒ prt(o1).result′ := expr

∧ sysfail′ := (sysfail ∨ τ 6= typer(o1) ∨ expr = ⊥))

⊕ sysfail′ := true])
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∨ (γ ≡ “destroy(expr)”

∧ [(expr 6= ⊥ ∧ ∃ o1 ∈ OC : o1 = expr 6= nil

∧ o1.my ac = o.my ac

∧ (o1.status′ 6∈ {dormant, dying, dead}

=⇒ [o1.sc
′ := qx

∧ (¬stable(o)′ =⇒ o1.status′ := dying)

∧ (stable(o)′ =⇒ o1.status′ := dead)))]

⊕ sysfail′ := true])

An operation call action suspends object o and configures o’s entry of the
pending request table s.t. it denotes the callee, the called triggered operation,
and the parameters. Initially the status of the operation is “pending”. A creation
action is handled like a triggered operation since the caller should block until
an object of the desired class is readily created with all inherited parts and all
aggregated parts:

ρinit opcall or create =df (γ ≡ “r.call(op, expr1, . . . , exprn)”

∨ γ ≡ “r1.a := r.call(op, expr1, . . . , exprn)”)

∧ o.r.my ac = o.my ac

∧ sysfail′ := (sysfail ∨ o.r = nil ∨

n
∨

i=1

expri = ⊥

∨ o.r.my ac 6= o.my ac)

∧ (o.status′ := suspended

∧ prt(o).dest′ := o.r ∧ prt(o).op′ := op

∧ prt(o).status′ := pending

∧ prt(o).result′ := nil

∧ prt(o).op′
p := (expr1, . . . , exprn))

∨(γ ≡ “r.a := createc1
(expr)” ∧ o.my ac = expr ∧

sysfail′ := (sysfail ∨ expr = ⊥ ∨ o.my ac 6= expr ∨

(expr = o1 ∈ OC ∧ o1.status ∈ {dormant, dying, dead}))

∧ (∃ o1 ∈ Oc1
\ {nilc1

} :

o1.status = dormant ∧ o1.status′ := idle

∧ (¬c1.isActive =⇒ o1.my ac′ := expr)

∧ (c1.isActive =⇒ o1.my ac′ := o1)

∧ o.r.a′ := o1 ∧ o.status′ := suspended

∧ prt(o).dest′ := o1 ∧ prt(o).op′ := createc1

∧ prt(o).status′ := pending

∧ prt(o).result′ := nil ∧ prt(o).params′ := nil)
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c:Car m:Cruiser

dest

itsCrs
itsCar

c.status c.sc m.sc

msuspended idle

msuspended executing

msuspended idle

nilexecuting idle

opm.status

engagedep disengaged

engagedep disengaged

engagedep engaged

nilcrs engaged

status

pending

busy

completed

nil

ret

nil

nil

0

nil

par

nil

nil

nil

nil

prt[c]’:sconf’:

prt[c]’’:sconf’’:

prt[c]’’’:sconf’’’:

prt[c]’’’’:sconf’’’’:

dep crs>
/itsCruiser.call(engage)

disengaged

engaged

disengage/ engage/reply(0)

Fig. 6. Triggered Operation Call. Changing status of the caller c, callee m, and the
called operation engage in the pending request table between the beginning (unprimed
variables, not depicted here) and the end (at time t′′′′) of the operation call: the values
of selected elements of sconf and prt.

Becoming Stable. If object o becomes stable, some bookkeeping takes place.
If o was processing an event, the dispatch reference of its active object is reset.
If o was executing a triggered operation, the pending request table status is set
to “completed” to event completion to the caller. In both cases, o becomes idle.
If o is executing the run-to-completion step starting at qx, then it becomes dead:

ρbecoming stable =df (stable(o)′ =⇒ [o.my ac.ds = o

=⇒ (o.my ac.ds′ := nil ∧ o.status′ := idle)]

∧ [∀ o1 ∈ OC :

prt(o1).dest = o ∧ prt(o1).status = busy

=⇒ (prt(o1).status′ := completed

∧ o.status′ := idle)])

∧ (o.status = dying =⇒ o.status′ := dead)

Picking Up a Result. Object o can pick up the result of a previous triggered
operation call if the callee has set the status of o’s pending request table entry
to “completed”:

ρpick up result =df prt(o).status = completed =⇒ prt′(o) := nil

∧ (¬stable(o)′ =⇒ o.status′ := executing)

∧ ((γ ≡ “r1.a := r0.call(op, expr1, . . . , exprn)”

∧ ¬o.r1 = nil) =⇒ o.r1.a
′ := prt(o).result)

∧ (sysfail′ := (sysfail ∨ o.r1 = nil)

The complete execution of an example of a triggered operation engage() is
illustrated in Figure 6. The first row of the tables show the relevant part of
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the system configuration at time t′, just after c has entered the call into the
pending request table. Note that c has not yet taken the transition, it remains
in its previous state. The second row shows time t′′, just after the Cruiser m
has accepted the call. At time t′′′, m has just completed its run-to-completion
step, i.e. written the result, changed the operation’s status to “completed”, and
become idle. This is an indicator for c to pick up the result at time t′′′′, i.e. read
the reply value from the table, clear the table entry, and now take the transition.
c is executing and continues its run-to-completion step, assuming that c does not
become stable.

3.4 The STS Semantics of a krtUML Model.

Putting all specifications of different kinds of transitions together we define the
semantics of krtUML as a symbolic transition system over the three system vari-
ables (from Subsection 3.2) with the initial condition and combined transition
relation specified in the following definition.

Definition 7 (krtUML Model Semantics). Let M = (T,F,Sig, <, C, croot, A)
be a krtUML model. The semantics of M is the STS

STS(M) = (V, Θ, ρ), where

System Variables: V =df {sconf : Tsconf(M), prt : Tprt(M), sysfail : IB}.

Initial condition: Initially a single object of class croot exists and has status
“executing”. All other objects are dormant, and all attributes have default values:

Θ =df ∃ o0 ∈ Ocroot
\ {nilcroot

} :

(o0.status = executing ∧ o0.ds = o0

∧ o0.sc = croot.q0 ∧ o0.eq = ε

∧ (∀ o1 = (c1, n1) ∈ OC \ {o0} :

o1.status = dormant ∧ o1.sc = c1.q0

∧ o1.ds = nil ∧ o1.eq = ε))

∧ ∀ o = (c, n) ∈ OC : o.c::self = o

∧ (∀ a ∈ c.attr : o.a = niltype(a))

The unique single object of class croot which is alive at the beginning of a run r
is called the root object of r.

Transition relation: The intermediate predicate ρ0 composes the above intro-
duced subpredicates as follows:

ρ0 =df ∀ o ∈ OC : o.status 6= executing ∧ o.eq = ε

∨
(

¬sysfail ∧ ∃ o = (c, n) ∈ OC ∃ (q, γ, q′) ∈ c.tr :
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o.sc = q ∧
(

o.sc′ := q′ ∧ (

[o.status = idle ∧ (ρget event ⊕ ρaccept op)]

∨ [(o.status = executing ∨ o.status = dying)

∧ (ρskip guard ∨ ρnon op action)]

∨ [o.status = suspended ∧ ρpick up result])

∧ ρbecoming stable

∨ o.sc′ := o.sc ∧ ([o.status = idle ∧ ρdiscard event]

∨ [o.status = executing ∧ ρinit opcall or create])
))

The final transition relation ρ is obtained from ρ0 by adding a frame axiom which
requires that only those places of s are allowed to change in the transition to s′,
which get new values by an assignment “:=” in ρ0, and changing the assignments
to “=”.
The semantics of a krtUML model M is given as the set runs(STS(M)) of all
computations in M . �

It is easy to see that ρ effectively restricts activity to at most one object,
resulting in an interleaving of actions from different objects.

The following consequence from Definition 3 and Definition 7 formalises the
main properties of the described krtUML semantics.

Consequence: Let M be a krtUML model, r ∈ runs(STS(M)), (sconf, prt,
sysfail) ∈ r, and o 6= ō ∈ OC . Then

(i) (Level of the Computation Concurrency)
sconf(o).status = sconf(ō).status = executing ⇐⇒ o ∈ Cm(o1), ō ∈
Cm(o2) ∧ o1 6= o2 — only objects from different components can be exe-
cuting at the same time.

(ii) (Component Interference Points)
sconf(o).my ac.ds = nil ⇐⇒ (∀ô ∈ OC : sconf(ô).my ac = sconf(o).my ac ⇒
sconf(ô).status ∈ {idle, dead, dying}). An object o can accept an event only
if other objects from its component are not currently executing. �

4 Assessing the Expressiveness of krtUML

In this section we indicate how to reduce richer UML models in rtUML as sup-
ported in the IST project Omega [10] to the krtUML subset defined in Section 2.
Besides, we explain the choice of the design decision behind the formal semantics.

4.1 Translating rtUML to krtUML

UML defines associations and association end-points to capture relations be-
tween classes. Semantically, association-end points maintain pointers to objects
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accessible through this association end-point (subject to restrictions on visibility
and navigability). Our precompilation introduces these as what we call implicit
attributes, and translates code invoked when creating compound objects for es-
tablishing links employing a set of implicit operations such as ‘add to associa-
tion end’. Note the introduction of the special type Tas provided for such at-
tributes in the krtUML model. In particular, pre-compilation will create implicit
attributes for maintaining knowledge about all (possibly dynamically created)
component objects 5 of a strong aggregation (also called composition); it will
include calls for creation of component objects with bounded multiplicity in the
constructor code of the aggregate object; it will contain calls for destroying every
existing component object within the destructor code of the aggregate object.

Regarding generalisation of objects, we create private instances of all pre-
decessors in the generalisation hierarchy (much as the creation of a compound
objects induces creation of its components) to keep all operations and statecharts
overwritten in the specialised objects. This allows to capture both static and dy-
namic polymorphisms using implicit attributes uplink and downlink to navigate
across these instances to find e.g. the definition of operations matching a call. We
do not require any restrictions on the statechart inheritance: a sub-class might
have state-machine overwritten independently from that of the corresponding
super-class. All private copies maintain their own object-configuration, hence e.g.
accepting a triggered operation will only change the state-configuration of that
state-machine corresponding to the object offering the operation in the general-
isation hierarchy. The statechart inheritance described in [10] can be considered
as a particular case.

Another precompilation step transfers hierarchical UML statecharts from
rtUML to flat state-machines of krtUML without changing its behavior. The
states in a flattened state-machine correspond to state configurations (a set of
states) from the original statechart extended with the history function (keep-
ing information for the history connectors). Besides, for the statechart of each
reactive class c we add the following kinds of auxiliary states:

• One or several “creation” states q0, . . . , qn (n ≥ 0), where q0 has the out-
going transition guarded by triggered operation createc and followed by the
constructor code, ending with the initial state of the original (hierarchical)
statechart. Only the statechart of the root-class does not contain any trig-
gered operation at its “creation” transitions.

• A “destruction” state qx with outgoing transitions containing the destructor
code. Then every state in the flattened state-machine containing termination
vertice (from the original statechart) has an outgoing transition to some
auxiliary state without triggering guard and with action destroy(self);

• Several “internal” states necessary to split complex transitions, e.g. transi-
tions containing non-primitive actions.

5 Note the difference between a component object, specified by the composition as-
sociation as a “part” of an aggregate object and used at the rtUML level, and the
notion of component as a group of one active and several passive objects, used at
the krtUML level
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4.2 The Choice of rtUML Communication Scheme

Certain transformations in the pre-compilation steps are based on modelling as-
sumptions. In this paper we only elaborate on the concept of components as intro-
duced in Definition 5 (iii). When targeting distributed system-implementations
of real-time systems, synchronous operation calls clearly cannot be used for
component communication. Indeed, any estimation of worst-case execution time
would have to cater for a waiting delay until the receiving component is able
to accept a call, which itself may be blocked while awaiting serving of an oper-
ation call by yet a third component. We thus assume a modeling style, where
inter-component communication is restricted to signal-based communication. To
exploit this, we allow the grouping of objects into components ; within a compo-
nent, no restrictions are placed as to inter-object communication. Based on the
pragmatics of active objects in UML, we mandate, that each such component-
group contains exactly one active object, and allow to include an arbitrary num-
ber of passive objects in the group. Active objects are assumed to be reactive,
and reactive passive objects are required to delegate their event-handling to the
one active object within the group.

term:Terminal

hnd:CarHandler

mgr:PlatformMgr

car:Car

crs:Cruiser

itsCar my_ac

my_ac
my_ac

my_ac

itsCar

eq
eq

itsCruiser itsHnditsHnd

itsPmgr

itsTerm itsTerm

Comp.1 Comp.2

Fig. 7. UML Components: A snapshot of a model part shows active objects car and
term (with their event queues) and passive objects crs, hnd, and mgr. Reactive objects
car, crs, and hnd are denoted by associated schematic state-machines. Active objects
car and term designate their components Comp.1 and Comp.2, respectively.

Figures 7 and 8 illustrate the concepts of components and intercomponent
communication using the Automated Rail Cars System example from [15]. The
graphical representation of a snapshot of a model on Figure 7 shows objects on
the krtUML level. Each reactive object has a link to an active object via my ac

which is assumed to be constant for the object’s lifetime. Objects referring to
the same active object form a component. Figure 7 shows two components with
a single link across a component-boundary. All event-handling is delegated to
the component’s active object, which keeps all events in its event queue. When
the event has reached the top of the queue, the active object may decide to take
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the event from the queue and dispatch it to the destination. This is indicated in
Figure 8 by light-gray arrows. The semantics in Section 3 is explained from the
perspective of the destination.

term:Terminal

hnd:CarHandler

mgr:PlatformMgr

car:Car

crs:Cruiser

itsCar my_ac

my_ac
my_ac

my_ac

itsCar

eq
eq

itsCruiser itsHnditsHnd

itsPmgr

itsTerm itsTerm

Comp.1 Comp.2

DepartReq
dispatch

Fig. 8. Event communication: Sending an event of DepartReq from car to hnd in
fact enters the event into the event queue of term, which is the active object associated
with hnd .

The semantics enforces, that at most a single thread of control is active within
one component. We feel, that deviating from this modelling paradigm, and in
particular allowing multiple threads to execute within one object could easily
cause modelling errors not acceptable for hard real-time applications.

5 Related Works

All attempts to define UML semantics can be classified into different orthogonal
dimensions.

One direction in the semantics classification is the level of UML coverage.
Many people have been trying to build the semantics of individual diagrams of
the UML – e.g., [20, 4] etc. on state-machines, [12] on collaboration diagrams,
[13, 16] etc. on class diagrams, [28] on use cases, [3] on activity diagrams – or
just to give formal foundations for action language (e.g., [24, 2]). Because all dia-
grams are only views on one and the same model, the attempts to give semantics
for separated UML diagrams fail in producing the right semantics for the en-
tire UML. In our approach a symbolic transition system represents both static
and dynamic aspects. The combination of statics and dynamics is also given
in [29] which considers the problem of defining active classes with associated
state-machines. It gives a very fine interleaving semantics for state-machines in
terms of transition systems. In difference to our approach, the authors do not
give precise semantics for state-machines, for event queue handling, consider a
limited inheritance, and they treat only flat UML state-machines without action
semantics.
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Another coverage level relates to the problems with possible concurrency as
well as aspects of objects communication, which have been uncovered in [29] and
not addressed in the original UML 1.x documents itself. Such open problems are
typical for so called loose semantics introduced in [16], where the aspects of con-
currency and object communication are not fixed to some design decision, but
cover different implementations. Such loose semantics is not suitable for formal
verification. Our paper tries to overcome this problem by fixing one detailed
semantics as an example of the feasibility of UML semantic for verification pur-
poses. From other side, there are a number of UML modelling and/or verification
tools implementing precise semantics by translating UML models to program-
ming language or model checker internal formats ([17, 9, 1, 21]). These tools have
different limitations on the supported UML features and do not provide formal
description of the implemented semantics or it is just technical translations.

H. Hußmann [16] proposes the third dimension for the classification of at-
tempts towards the UML formal semantics, dividing approaches into the follow-
ing groups:

1) Naive set-theoretic approach. M. Richters and M. Gogolla [31] have sug-
gested to use simple set-theoretic interpretation for UML class diagrams. In this
approach, the semantics of a class diagram is described as a set of hypergraphs,
corresponding to a configuration of objects. This approach has the low level of
abstraction, where the concepts of UML itself are more abstract than the for-
mal semantics given to it. This kind of semantics is mostly used for the formal
definition of OCL constraints within UML models. We do not consider OCL in
our approach.

2) Metamodelling semantics. This group of approaches is based on the ap-
plication of a “bootstrapping” principle [7], where the semantics of UML is
described using a small subset of UML as a core based on static semantics only.
The approach of the pUML group to the UML semantics is given in [6, 5, 2].
Essentially, an algebraic specification is used to describe legal (local) snapshots
of the system without treating actions, whereas our approach gives a formal se-
mantics for dynamic behaviour taking into account primitive action semantics
as well. The study of A. Kleppe and J. Warmer [19] is based on the pUML OO
meta modelling approach. In addition, it takes into account that static and dy-
namic viewpoints on the system can not be separated. But the formal semantics
for state-machines is not really defined, the set of primitive actions is very re-
strictive, and the transporting mechanism for signal inter-object communication
is not specified. In our approach, we give a formal semantics for actual state-ma-
chines (not their unfolding into actions) with a larger set of primitive actions.
We also resolved open problems with concurrency.

3) Translation semantics. An approach, which tries to keep the right abstrac-
tion level, defines translation from UML class diagrams to traditional specifica-
tion languages (Z [14], Object-Z [18], CASL [30] etc.). For example, G. Reggio
et al. [30] proposed a general schema of the UML semantics by using an exten-
sion of the algebraic language CASL for describing individual diagrams (class
diagrams and state-machines) and then their semantics are composed to get the
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semantics of the overall model. Also other UML diagram types have been trans-
lated to formal notations, e.g., using Abstract State Machines ([4, 3, 23, 8]).
E. Börger et al. [4] defined the dynamic semantics of UML in terms of ASM
extended by new construct to cover UML state-machine features. The model
covers the event-handling and the run-to-completion step, and formalises object
interaction by combining control and data flow features. However, the authors
did not give a complete solution to solve transition conflicts and it is not clear
how firable transitions are selected. The semantics implemented by UML-tool
vendors via code generation or model simulation can be also classified to this
group of approaches (among other: [17, 9, 1]).

Differently from these approaches, our study provides one formalism (STS)
for both static and dynamic semantics, which also contains action language.

4) Combination of the approaches mentioned above. An example of combina-
tion of several approaches can be found in [23]. In this research, static semantics
is defined using meta-modelling mechanism of UML, the execution semantics
is expressed as ASM programs. The study covers all features contained in the
class diagrams, and in the body of the operations (quite thorough set of action
types). The aspects of inter-object communications were not really covered and
the semantics of UML statecharts was not addressed, although it can be ac-
companied by the complementary papers [3] and [4]. But these articles consider
state-machines separated from the rest of UML, whereas our approach provides
one semantics for class diagrams and statecharts.

6 Conclusion

With respect to the approaches sketched above, the main novelty of our approach
is that it resolves uncovered problems with concurrency and object communi-
cation by giving a formal semantics for a chosen concrete decision. W. Damm
and B. Westphal [11] have shown that this semantics can be used for formal
verification. In our approach we allow that both active and passive objects can
be reactive, thus considering event communication between all objects. We also
capture two different kinds of inter-object communication – synchronous (via
triggered operation calls) and asynchronous (via signal events).

Thus, we have provided the semantical foundation for a rich sublanguage
of UML which is expressive enough to deal with industrial UML models for
real-time applications. Our partners from Verimag have proposed extensions of
the semantical model focussed on real-time, in particular taking into account
the need to support annotations for real-time scheduling. Ongoing work within
Omega builds on the semantical foundation layed down in this paper to develop
a verification environment for real-time UML.
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