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1 System Requirements

1.1 Software

• Windows NT 4.0, 2000, or XP.

• Rhapsody 4.0, Buildnumber 235809, or Rhapsody 4.0.1, Buildnumber
240912, or Rhapsody 4.1, Buildnumber 360709, or Rhapsody 4.2, Build-
number 378424.
Note that these are exact requirements. Other and in particular newer
versions of Rhapsody may not cooperate properly with the ruve.

• Cygwin 1.3.12-1 or later (available at http://www.cygwin.com) with at
least the following packages:

– from the category “Base”:

∗ the package “bash: The GNU Bourne Again SHell”

∗ the package “grep: GNU grep, egrep and fgrep”

∗ the package “gzip: The GNU compression utility”

∗ the package “libreadline5: GNU readline and history libraries”

∗ the package “sed: The GNU sed stream editor”

∗ the package “sh-utils: A set of GNU utilities”

∗ the package “tar: A GNU file archiving program”

∗ the package “textutils: The GNU text processing utilities”

∗ the package “which: displays where a program is located”

– from the category “Devel”:

∗ the package “make: The GNU version of the ’make’ utility”

∗ the package “gcc: C, C++, Fortran compilers”

– from the category “Libs”:

∗ the package “regex”

∗ the package “tcltk: TCL/TK libraries”

For remote verification (cf. sec. 3.13) the following additional cygwin
packages are required:

– from the category “Net”:

∗ the package “openssh: The OpenSSH server and client programs”

Note that the cygwin installer (“setup.exe”) only installs the base system
by default, so you might have to select these packages explicitly in the
“Select Packages” dialog (cf. fig. 1). If you didn’t do so during the initial
installation, simply run the installer again and add the packages this time.

1.2 Hardware

• For best performance results contemporary hardware is recommended, i.e.
at least 1 GByte of memory and at least 500 MHz processor-clock.
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Figure 1: Cygwin installation: Select Packages.

2 Installation Guide

2.1 Unpacking

The Rhapsody UML Verification Environment (ruve) is provided as a tgz

archive which should be unpacked from the cygwin-bash as follows1:

1. In the cygwin-bash, change to the directory where the ruve is to be in-
stalled2, e.g.

$ cd C:/Programs

2. Unpack the archive by

$ tar -xvzf 〈DATE〉-uve-release-〈RELEASENR〉.tgz

This unpacks all files into the directory

〈DATE〉-uve-release-〈RELEASENR〉

to which we refer to as “UMLVERIFROOT” from now on.
In the above example, UMLVERIFROOT would denote

C:\Programs\〈DATE〉-uve-release-〈RELEASENR〉.

2.2 The Connection to Rhapsody

Rhapsody is made aware of the ruve by copying the property file site.prp from
the package to the right location within the Rhapsody installation (and in some
cases by additionally modifying Rhapsody’s file siteC++.prp):

1. [Recommended] Don’t have any Rhapsody running for the next steps.

1We encountered problems when using windows tools like WinZip r© for unpacking the
archive. The usage of the tar(1) program delivered with cygwin is highly recommended.

2Please choose a directory which does not contain spaces.
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2. Find out the complete path of the Rhapsody installation, e.g.

C:\Programs\Rhapsody

which we refer to as “RHAPSODYROOT” from now on.

3. [Optional] Find out the complete path of the XMI Toolkit for Rhapsody
installation, e.g.

C:\Programs\XMIToolkit4Rhapsody

which we refer to as “XMI4RHAPROOT” from now on.

4. Run the installation-script UMLVERIFROOT\install.sh in the cyg-
win-bash3, e.g.

$ UMLVERIFROOT/install.sh

The script is supposed to find out the path of the cygwin installation
(CYGWINROOT) and UMLVERIFROOT, but it has to ask the user to
provide RHAPSODYROOT and XMI4RHAPROOT. If the installer finds
suitable installations paths by itself, a suggestion is presented in square
brackets which can be accepted by simply pressing Return.

If the installer is not able to determine the exact build number of your
Rhapsody version, it asks you to provide this number (which can be found
in the ’About Rhapsody ...’ dialog under Rhapsody’s ’Help’ menu).

The installation-script enters these paths into a site.prp file which is then
copied into the Rhapsody installation. The original site.prp is copied to
site.prp.bak if there is no previous backup.

If a ’XMI Toolkit for Rhapsody’ installation was found, the two config files
toolkit.ini and properties.ini are patched such that the exporter will
produce XMI descriptions of the models which are suitable for xuve (XMI
UML Verification Environment) [OFF03b]. The original files are copied
to toolkit.ini.bak and properties.ini.bak if there are no previous
backups.

3Alternatively you can double-click the install.bat in an explorer window.
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In the example, the complete installation dialog reads:

RUVE installer -- version ‘‘<RELEASENR>’’.

Please enter the Rhapsody root directory:
[C:\Programs\Rhapsody]

Please enter the ’XMI Toolkit for Rhapsody’ root directory,
or enter ’none’ if the toolkit is not installed:
[none]

Using:

OSTYPE = cygwin
CYGWINROOT = C:\cygwin
UMLVERIFROOT = C:\Programs\〈DATE〉-uve-release-〈RELEASENR〉
RHAPSODYROOT = C:\Programs\Rhapsody
RHAP_BUILDNO = 235809
XMI4RHAPROOT = none
GNUTOOLSPATH =

site.prp backed up to C:\Programs\Rhapsody/Share/Properties/site.prp.bak.

Installation done.

5. The installation-script checks if all necessary cygwin tools are installed. If
this is not the case, the missing packages are listed and the script stops
with the message Installation failed!. See section 1.1 on how to in-
stall new packages in cygwin. Then, re-run the installation script.

6. In some Rhapsody installations, the file

RHAPSODYROOT\Share\Properties\siteC++.prp

contains a line which begins with

Property Environment Enum

but does not contains the enumerator “Verification”. This causes “Verifi-
cation” not to appear in the “Environment” choice-list in the “Settings”-
tab of a configuration (see sec. 3.4–3.6).
The installation script checks for this case and fixes the siteC++.prp if
needed. The installation dialog then contains the two additional lines:

siteC++.prp backed up to C:\Programs\Rhapsody/Share/Properties/siteC++.prp.bak.

siteC++.prp fixed (’Verification’ added to ’Environment’).
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3 Tutorial

3.1 The Running Example: Vending Machine

The VendingMachine sells drinks. Water
at the price of 50 cent, a softdrink at the
price of 1 euro, and tea at the price of
1.5 euro. As coins are inserted, lamps on
a choice panel signal the possible choice,
i.e. after inserting 50 cent, water will be
enabled unless the water stock is empty.

Concerning money, the VendingMa-
chine is not very sophisticated. It is for
example not possible to buy water if only
a 1 euro coin is inserted, since the machine
does not keep track whether it already has
a 50 cent coin for change. Furthermore
there is a gambling component: the ma-
chine only signals if a particular drink is
in stock if the corresponding amount of
money is inserted. I.e. if the machine
is out of water, one can only insert more
money and try for another type of drink or leave the money in the machine.
Supernumerary coins are given back immediately, e.g. if 1.5 euro are already
inserted, no more coins are accepted.

The VendingMachine is modeled as a composite class with four parts (cf.
fig. 2).

VendingMachine

Water_enabled : int
Soft_enabled : int
Tea_enabled : int

+disable_all():void
+enable_Water():void
+enable_Soft():void
+enable_Tea():void
+WATER()
+SOFT()
+TEA()
+ChoicePanel()

:ChoicePanel
1

+giveback_100():void
+giveback_50():void

:Changer
1

+Prepare_Water():void
+Prepare_Soft():void
+Prepare_Tea():void
+DWATER()
+DTEA()
+DSOFT()
+FILLUP()

:DrinkDispenser
1

+fallthrough():void
+update_ChoicePanel()
+C50()
+E1()
+OK()

:CoinValidator
1

1

1

1

1

1

1

Figure 2: The Vending Machine: Class Diagram.
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There is a CoinValidator which accepts coins ‘C50’ or ‘E1’, keeps track of
the already inserted money by the states within state ‘waitOK’, and enables
the lamps at the ChoicePanel by entry-actions of the corresponding states. For
example if only 1 euro coins are inserted, then only the choice of softdrink is
enabled since the machine cannot give back the 50 cent change if water would
be selected.4

If supernumerary coins are inserted, the Changer’s methods ‘giveback 50()’
or ‘giveback 100()’ are called to give the money back immediately. Figure 3(a)
shows the Statechart of the CoinValidator.

Within the ChoicePanel, the private attributes ‘Water enabled’, ‘Soft en-
abled’, ‘Tea enabled’ model the choice-lamps which can be controlled by the
public methods ‘enable Water()’, ‘enable Soft()’, and ‘enable Tea()’, respec-
tively. Within these methods, the ChoicePanel checks whether the DrinkDis-
penser has the corresponding drink in stock by looking at the state of the
DrinkDispenser.

The ChoicePanel accepts choices ‘WATER’, ‘SOFT’, and ‘TEA’. If the cho-
sen type of drink is actually enabled, the ChoicePanel starts the DrinkDis-
penser by sending ‘DWATER’, ‘DSOFT’, or ‘DTEA’, resp., and then disables
all choices. Figure 3(b) shows the Statechart of the ChoicePanel.

The DrinkDispenser is modeled as an AND-state with three parts, one for
each type of drink (assume there are three different outlets for drinks) but they
are operated sequentially since only one drink can be chosen at a time.

In every compartment of the AND-state there are four states which model
the amount of drinks in stock5 If a request for an available drink arrives, the
drink is prepared by calling a (dummy) method, e.g. ‘Prepare Water()’, and
the CoinValidator is sent an ‘OK’ event to have it accept another set of coins.

All drink stocks can simultaneously be reset by sending a ‘FILLUP’ event,
which also enables the choice-lamps at the ChoicePanel according to the already
inserted amount of money, such that a customer who inserts 1.5 euro into the
machine with no drinks in stock can wait for a fill-up and then make his choice.

Note that the DrinkDispenser assumes that it is not started if there is no
drink in stock, which is in fact guaranteed by the ChoicePanel. Otherwise it
would not send the ‘OK’ event to the CoinValidator, thus reaching a deadlock.
Figure 3(c) shows the Statechart of the DrinkDispenser.

Note that the vending machine uses a special option of ruve which operates
the statecharts in a way which corresponds to “run idle” in the simulation in
Rhapsody, i.e. external events are only accepted if the event queue is empty.

4 The design of the system contains the following flaw: It was assumed that there is
no history connector needed in ‘have c100 or e1’ as destination of the self-loop, as long as
the outgoing transition with trigger ‘C50’ starting in the default-state ensures that water is
enabled in ‘have c150’.
One observable consequence is, that the sequence ‘E50’, ‘E50’, ‘E1’, ‘FILLUP’, ‘WATER’
does not yield water if the vending machine had been out of water at the beginning of the
sequence (since the method ‘update ChoicePanel()’, which is a reaction on ‘FILLUP’, only
enables water if the CoinValidator is in ‘have c100’).
Another consequence is, that the sequence ‘E50’, ‘E50’, ‘E1’, ‘WATER’ yields water and only
1 euro change. This is not observable by the verification environment since the Changer
provides only dummy methods and no real implementation.

5this could alternatively be modeled as counters of type integer, but the current encoding
is more efficient for verification.
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Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

(a) CoinValidator’s Statechart

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser
->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

(b) ChoicePanel’s Statechart

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

(c) DrinkDispenser’s Statechart

Figure 3: The Vending Machine: Statecharts.

8



This ensures for example that no more money is accepted once a choice is made,
since then there are always internal events in the queue until the final ‘OK’ event
is dispatched (cf. paragraph 3.2.2 for details about external events).

For the verification examples in sections 3.4 – 3.6, a system is used which
contains exactly one instance of class VendingMachine including one instance
of each of its part.
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3.2 Terminology

A system configuration is a valuation of all attributes of all alive objects in the
system, which comprises in particular the active states of the reactive objects’
statecharts.

The ruve considers only system configurations at step boundaries, i.e. after
taking a transition. Taking a transition comprises executing the exit action of
the current state, executing the actions of the transition, and the entry actions of
the destination state. For AND-states, taking multiple transitions in different
compartments of the AND-state due to the same cause (dispatched event or
run-to-completion step) counts as one transition.

By a run of the system we denote a sequence of system configurations, where
two subsequent system configurations c1 and c2 in the run are related in that
c2 is reachable from c1 by taking a transition.

A run-to-completion step consists of taking one or more transitions, until a
stable configuration without enabled outgoing transitions is reached.

For a Rhapsody design built using the means provided in appendix A, the
ruve is able to

• solve “drive-to-state” tasks,

e.g. “is it possible for the DrinkDispenser to reach state ‘Water out’ if
only ‘C50’ coins and ‘WATER’ requests are used?”, and to

• solve “drive-to-property” tasks,

e.g. “is it possible for the ChoicePanel that attribute ‘Soft enabled’ has a
value of 1 while ‘Water enabled’ is still 0 if any type of coins and choice
requests are used?”, and to

• accomplish “invariance-check” tasks,

e.g. “is it true that attribute ‘Tea enabled’ having a value of 1 implies
‘Water enabled’ is 1 if one enters any sort of coin and choice requests?”,
and to

• accomplish “pattern-check” tasks,

e.g. “is it true that whenever a ‘C50’ coin is received by the CoinValidator,
then the attribute ‘Water enabled’ of the ChoicePanel has a value of 1 one
step later?”,

by checking all possible runs of a Rhapsody design starting at the step boundary
just after the initialization phase, i.e. after all initial objects have been created
and all reactive objects’ statecharts have taken the transition originating at the
root state’s default state [i-L02].

For the “drive-to-state” and “drive-to-property” tasks, the ruve generates a
prefix of a run which leads to a system configuration with the wanted properties
if such a run exists, otherwise it indicates that the state or property is not
reachable. Such a run is called witness trace, since it witnesses the reachability
of the state or property, or simply trace.
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For the “invariance-check” and “pattern-check” tasks, the ruve indicates
that the stated property holds if it actually holds, and otherwise generates a
prefix of a run which contradicts the property. Such a run is called counterexam-
ple, or error path, since invariants usually state wanted properties, the system
presumably contains an error if the property does not hold, or also simply trace.

When the ruve solves a task, three major phases can be distinguished and
observed in Rhapsody’s “Output Window”:

1. Model-generation, i.e. the transformation of the UML-model into a transition-
system representation suitable for the underlying model-checker.

2. Model-checking, i.e. actually solving the task on the level of transition-
systems.

3. Trace-generation: depending on the result of the model-checking phase,
a trace is generated, translated back from the transition-system level into
the vocabulary of the UML-model, and prepared for visualization.6

Right after the model-checking phase, the ruve prints a summary of the
outcome of the current task, i.e. whether a state or configuration is reachable
or not, or whether a “invariance-check” or “pattern-check” property holds or
not.

The summary includes the type of task (“invariance-check”, “pattern-check”,
“drive-to-state”, “drive-to-property”), the C++ expressions given by the user
to describe e.g. the configuration to drive to, the used assumptions (if any),
and the mode and set of external events, if given by the“ExternalEventTrace”
property.7

If a witness-trace or counterexample exists, the summary closes by announc-
ing the following trace-postprocessing phase.

Prefixes of runs are presented in form of a timing diagram which shows the
attribute valuations and statechart configurations at every system configura-
tion of the run and a live sequence chart (LSC) which shows only the event
communication in the run (cf. sec. 3.4).

3.2.1 Caveats

Between Step Boundaries Note that, according to the notion of a step
induced by step boundaries, it is not possible to drive to properties which hold
only “between step boundaries”.

For example when the VendingMachine is filled up by sending an event
‘FILLUP’, the action at the corresponding transition withing the DrinkDis-
penser calls the method ‘update ChoicePanel()’ of the ChoicePanel to update
the choice lamps. The implementor of method ‘update ChoicePanel()’ chose to
set the lamps for water, softdrink, and tea sequentially in reverse order:

6To be precise, it is the model-checking phase itself which already generates the trace, but
it is restricted to only those parts of the model which are necessary for the task, other parts are
not considered. To present a complete trace, this trace is simulated, i.e. intuitively executed
stepwise, including all parts of the model to provide sensible values for the unnecessary parts,
and thus may require a significant amount of time.

7The summary of the last run is also written to the file ruve-result.txt.
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if (IS_IN(have_c150))

itsChoicePanel->enable_Tea();

if (IS_IN(have_c100_or_e1) || IS_IN(have_c150))

itsChoicePanel->enable_Soft();

if (IS_IN(have_c50) || IS_IN(have_c100) || IS_IN(have_c150))

itsChoicePanel->enable_Water();

Thus there exists a system configuration where the lamp for tea is on but the
one for water is not.

This configuration cannot be found by a “drive-to-property” task since the
ruve considers only the result of the whole action, and the overall result is never
a combination where tea is enabled at the ChoicePanel and water is not.

state_0 state_1state_0 state_1
E/x=1

/x = 0

(a) Event reception

state_3 state_4state_3 state_4
/x=1; GEN(E); x = 2

/x = 0

(b) Event sending

Figure 4: Observing events and conditions.

Event- and Non-Event Property Expressions Note that event queries in
expressions (cf. sec. A.7.1) are evaluated in the starting state of the transition
which is taken on receiving an event resp. which sends the event in its action
part when taken. A combination of event and non-event queries in a property
expression holds in a system configurations c iff it holds with

1. the non-event sub-expressions evaluated wrt. to c and

2. the event sub-expressions evaluated wrt. to the event-receiving and -sen-
ding on a transition from c to some system configuration c′ following c in
the same run.

For example let the statechart in fig. 4(a) be the statechart of a class C with
attribute x. Then it is possible to solve the “drive-to-property” task for the
property8

root->p C->x == 0 && ER E( ENV, root->p C )

8Here, ER E denotes the observation of receiving an event of type ‘E’. Analogously, ES E

denotes the observation of sending an event of type ‘E’. See section A.7.1 for a detailed
description.
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but not for

root->p C->x == 1 && ER E( ENV, root->p C )

since when in state ‘state 0’, x == 1 does not hold, and when in ‘state 1’ the
event receive query does not hold according to the above introduced interpre-
tation.

Analogously, let the statechart in fig. 4(b) denote the statechart of a class
D with attribute x. Then it is possible to solve the “drive-to-state” task for the
property

root->p D->x == 0 && ES E( root->p D, root->p D )

but not for

root->p D->x == 1 && ES E( root->p D, root->p D )

since the value of ‘x’ is only considered at step boundaries, and also not for

root->p D->x == 2 && ES E( root->p D, root->p D )

since when in state ‘state 3’, x == 2 does not hold, and when in ‘state 4’ the
event send query does not hold.

Thus to avoid mis-interpretations, it is recommended not to change at-
tributes on transitions whose event sending is referenced in a query expression or
to send all referenced events at the beginning of the action s.t. the actual values
between step boundaries match the values observed at the step boundaries. In
the latter example, if the action is changed to GEN(E); x = 1; x = 2;, then
the value of ‘x’ is the same value it has in state ‘state 3’, thus it is more intuitive
that only the first of the above “drive-to-state” tasks is solvable.

3.2.2 Events and EventQueues

In the following, we call an event instance generated within the model an in-
ternal event and an event generated by the environment according to the “Ex-
ternalEventTrace” property an external event. Note that the distinction is not
class-based, but characterizes the origin of an event instance.

EventQueue Length In the current version of ruve, the user has to provide
the maximum length of the event queue – that is, how many events can be
stored at most in the queue.

The most important indicator of how many event places you need, is the
maximum number of GEN calls in one run-to-completion step. If the model needs
to emit ‘OMStartBehaviorEvents’ (see below) to start objects with unstable
initial states, the event queue length has to be set at least to the number of
‘OMStartBehaviorEvents’ which may simultaneously be present in the queue.

Note that “triggered operations” are also mapped to event communication.
So you have to increase the length of the queue by one whenever there is com-
munication via “triggered operations” in the model.

External events are in fact not propagated through the queue, and thus do
not need to be considered when determining the queue length. The verification
environment may repeatly decide not to take the top-level event of queue but
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rather guess an event from the environment. With this strategy, a very fine-
grained interleaving of internal actions and external events is simulated. You
can enforce a more coarse interleaving if you set the property ’ExternalEvent-
OnlyWhenIdle’ to ’True’. Now, external events are only accepted if the internal
event queue is empty. In the visualization of the error path, the external events
are indeed visible in the queue since some possible sending point in time is
calculated by the visualization tool.

To set the properties, right-click on a configuration and select “Features”.In
the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class” “Veri-
fication”. In this list, double-click “MaxEventQueueLength” resp. “Exter-
nalEventsOnlyWhenIdle” and change the values appropriately.

Event Quantities For each event class, the ruve reserves a certain amount of
memory in its internal representation to store internal events of this class and
for each event class used in the “ExternalEventTrace” property, there is a single
additional memory place reserved for external events.

By default, the number of memory places for events is set to the length
of the event queue,, i.e. if the event queue length would be set to 3 for the
VendingMachine, then there would be space reserved for 3 ‘WATER’ events, 3
‘DWATER’ event, 3 ‘E1’ events, etc., although, for example, the ‘E1’ event is
never generated from within the model, but intended to be exclusively used for
external events.

The default is reasonable since events are constructed when they are inserted
into the queue and destructed after being dispatched to the destination object,
thus the event queue length provides an upper bound on the number of required
event places.

There are cases where the default is not “right” and needs to be corrected
manually. When applied to external events, the upper bound is typically too
large, which has negative impact on execution time of the model-checking task.
If these event class is only used from the environment, the number of internal
memory places should be set to zero. Additionally, when the length of the event
queue len is greater than one, there might be events classes in the model for
which it is not necessary to have len event objects alive simultaneously. Reduc-
ing the number to a sufficient level will reduce the model-checking complexity.
In the special case when the event queue is completely filled with events of type
Ev and the dispatching of the first Ev leads to a sending of a new event again
of type Ev in the same run-to-completion step, then the upper bound is too
small by 1 since the dispatched event is destroyed only after taking the last
transition of the run-to-completion step. This may lead to erroneous results
since allocation of the Ev for sending fails, which causes the internal memory
management for the model to produce unpredictable values.

For these cases, one can explicitly set the number of memory places to reserve
for each user-defined event class by setting the Property “MaxEventQuantities”
to a semicolon-separated (possibly empty) list of pairs of event class name and
non-negative quantity of the following form:

〈EventClass〉,〈Quantity〉 [ ;〈EventClass〉,〈Quantity〉 ]∗

Note that the list must not contain any spaces and that event class name has
to provided in its qualified form, i.e. prefixed by the package name. Event
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quantities for event classes not present in the model are silently ignored.

For example, to reserve no memory for the external ‘WATER’ events and
four places of ‘DWATER’ event in the VendingMachine (although there is no
need to do so), one would write:

Default::WATER,0;Default::TEA,4

The property is located directly below the ‘MaxEventQueueLength” prop-
erty. To set it, double-click “MaxEventQuantities” and change the value appro-
priately.

OMStartBehaviorEvents The verification environment uses the same mech-
anism as Rhapsody to ensure that reactive objects which have transient transi-
tion originating at their initial states9are “started properly”, namely ‘OMStart-
BehaviorEvents’. These events are processed regularly by the queue and ensure
that the flow of control is eventually passed to a started object which stayed
in his initial state waiting to take untriggered (but potentially guarded) tran-
sitions. Since the default to reserve one ‘OMStartBehaviorEvent’ per reactive
object would to be expensive for verification purposes, the user has to manually
decide how many of these events his model needs. This number n has can be
added to the “MaxEventQuantity” list described in the previous paragraph, in
the following form:

〈. . .;〉OMStartBehaviorEvent,n

For models where every reactive object is stable after the initial transition,
the default of zero ‘OMStartBehaviorEvents’ is of course sufficient.

To ensure that all of the settings above do not lead to ’queue overflows’
or ’out of memory’ problems during the model-checking phase, a predefined
verification task called “CheckMemoryBounds” can be performed. Chapter 3.11
describes this procedure in more detail.

3.2.3 SMI Modus

For internal use only.

9the initial state is the target state of the default transition
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3.3 Global Settings

For the ruve to work, a few global properties have to be set. They are best set
once in the “Features” menu of the project s.t. they are the default value in all
configurations which are created during the tutorial.

1. Start Rhapsody.

2. Open UMLVERIFROOT\examples\TheVendingMachine\TheVendingMachine.rpy.

3. Right-click on the project TheVendingMachine in a browser window and
select “Features” (cf. fig. 510).

4. Select the “Subject” “CPP CG” and the “Meta Class” “Package” and set
“DefineNameSpace” to “True” (cf. fig. 6).

5. Select the “Subject” “CPP CG” and the “Meta Class” “Relation” and set
“DataMemberVisibility” to “Public” and “ImplementWithStaticArray”
to “FixedAndBounded”.

6. Select the “Subject” “CPP CG” and the “Meta Class” “Verification”
and set “ExternalEventOnlyWhenIdle” to “True” and reduce all external
events to an internal quantity of zero by setting “MaxEventQuantities” to
“Default::C50,0; Default::E1,0; Default::WATER,0; Default::SOFT,0; De-
fault::TEA,0; Default::FILLUP,0;” (without spaces, cf. paragraph 3.2.2).

Additionally, you should reduce the integer range to “0 to 7”, by setting
“IntegerLowerBound” to “0” and “IntegerUpperBound” to “7”.

10All screenshots in this tutorial are taken from a Rhapsody 4.0 version. Never versions
look slightly different, but the corresponding elements should be easily recognizable.
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Figure 5: Opening the features dialog.

Figure 6: Setting global properties, Category Package.
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3.4 “Drive to State”

1. Task:

Check, whether it is possible for the CoinValidator object to
reach state ‘drinkReady’ if only ‘C50’ coins and ‘WATER’ re-
quests are sent from the environment.

2. Create a new configuration “VerifyDTS” within component “DefaultCom-
ponent” (cf. fig. 7).

3. Right-click on “VerifyDTS” in the browser and select “Features” to open
the features dialog.

4. In the “Initialization”-tab, choose “Derived”, check the box “VendingMa-
chine”, and uncheck the box “Generate Code for Actors” (cf. fig. 8).

5. In the “Settings”-tab, set

• “Instrumentation” to “None”,

• “Time-Model” to “Simulated”,

• “Statechart Implementation” to “Flat”, and

• “Environment” to “Verification” (cf. fig. 9).

Figure 7: Creating the new configuration “VerifyDTS” within the component.
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Figure 8: Initialization.

Figure 9: Settings.
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5. In the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class”
“Verification” and

• for “Spec” choose “DriveToProperty”11

• set “Spec::DriveToProperty” to the C++ expression

root->p VendingMachine->itsCoinValidator->IS IN(drinkReady)

which must not contain a semicolon (“;”) (cf. fig. 10).

Here, ‘root’ is the name of a “root object” which is only visible inside
the verification model and serves as the owner of all objects created
in ‘main()’.

In the example, the object of class VendingMachine is created in the
function ‘main()’ in the generated C++ code and assigned to the
variable ‘p VendingMachine’, i.e. an object created in ‘main()’ is
accessible with a navigation expression starting at ‘root’ followed the
objects’ name in ‘main()’.

• set “ExternalEventTrace” to

root->p VendingMachine->itsCoinValidator, C50; \

root->p VendingMachine->itsChoicePanel, WATER; \

to determine the set of events which may be sent to the system from
the environment (cf. fig. 11). If this property is empty, a “closed
system” is examined, i.e. all consumed events have to be generated
within the system. There is then effectively no “environment” which
could send events of types which are not sent in the system itself like
the coin or choice events in the running example.

The syntax of this property is lines (!) of the form

〈Destination〉 , 〈Event〉 ; \

where 〈Destination〉 is a navigation expression starting at root.
Note that leaving out the backslash (“\”), spreading a single en-
try over multiple lines, or entering whitespace behind the backslash
makes Rhapsody produce an invalid Makefile, i.e. the Generate/Ma-
ke/Run (see below) will stop immediately with an error message from
the make program!

• set “ExternalEventModus” to “ndet”, that is, whenever the system
becomes idle, one of the events from “ExternalEventTrace” can be
chosen non-deterministically and sent to the system.

Setting the “ExternalEventModus” to “det” causes exactly as many
events as in “ExternalEventTrace” to be sent to the system in exactly
the order they are listed in “ExternalEventTrace”. In the current
example, first a single ‘C50’ event, then an event ‘WATER’, and
then no further events would be sent.

11“drive-to-state” tasks are in fact a subset of “drive-to-property” tasks with a particular
form of properties
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Figure 10: Denoting the state to drive to by a C++ expression.

Figure 11: External events.
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6. Make “VerifyDTS” the active configuration (right-click on the configura-
tion and select “Set as Active Configuration” (cf. fig. 12)).

7. From the “Code” menu, select “Generate/Make/Run” (cf. fig. 13).

8. Confirm to create a new directory for the new configuration where all
temporary files and the result will be created (the “Directory” should not
be changed in the “Settings”-tab of the configuration).

9. In the executor-window one can observe the Rhapsody code-generation
and lots of output from the ruve (cf. fig. 14).

Finally the timing diagram and LSC viewer pop up and shows the prefix of
a run which leads to the requested state as a timing diagram (cf. fig. 17) and as
an LSC (cf. fig. 18). Figures 15 and 16 describe the usage of the timing diagram
and LSC viewer, respectively.

The timing diagram contains one waveform per object and attribute and an
additional waveform per reactive object which shows the configuration of the ob-
ject in terms of basic states (e.g. “Default::CoinValidator[1]’s statechart”).
A waveform “EventQueue” shows the content of the event-queue. Depending
on the kind of specification, several waveforms prefixed by “Spec::” denotes
the current evaluations of the specified properties. The numbers at the bot-
tom of the waveform window denote step boundaries. Note that the values
to the right of the step boundary 0 are the values just after the initial step
(cf. sec. 3.2), since the way to this step boundary where all objects (except for
events) have been created and all reactive objects have left their default state
is “pre-executed” such that the system configurations before this step boundary
are also not considered for the verification task.
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Figure 12: Setting the active configuration.
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Figure 13: Starting the ruve.

Figure 14: ruve output in Rhapsody’s “Output Window”.
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• when the pointer is on the name or waveform window, the cursor keys
scroll the names or waveforms respectively.

• holding down the shift key and left-clicking in the waveform window
shows a ruler which can be used to identify the step.

• the “search” text field can be used to search attribute waveforms by
regular expressions. All matching names are highlighted in red and the
viewer scrolls to the first matching waveform.

• the “filter” text field can be used to “filter out” waveforms from the
view by a regular expression. If the radiobutton “pos” is on, then those
waveforms which match the pattern remain in the viewer, when “neg”
is on, only those which do not match the pattern remain.

• the “reset” button clears both text-fields and causes the initial set of
waveforms to be shown.

• the waveform can be zoomed by “Zoom In” and “Zoom Out” in the
“View” menu.

• many properties like colors, fonts, etc. are customizable from the menus
below “Miscellaneous/Configure”.

Figure 15: Usage of the Timing-Diagram Viewer.

• currently to view LSCs, the editor LSCEdit is “abused” – only the
obvious viewing functionality of the LSCEdit like using the scrollbars
and the “Quit” menu-item are meant to be used.

Figure 16: Usage of the LSC Viewer.

The LSC contains one instance line per object participating in event com-
munication during the prefix of a run and possibly an instance line for the
“environment” representing the source of external events.

The example in figs. 17 and 18 together read as follows:

• The six links called its<ClassName> corresponds to the associations be-
tween the four parts of the vending machine as shown in fig. 2. Note that
objects have identities starting with 1 for every class.

• The waveform p VendingMachine denotes the identity of the composite
object which holds the four parts.

• The first step shows the initial configuration of the statecharts in terms of
basic states, i.e. since the DrinkDispenser has entered its AND state the
three basic states ‘W3’, ‘S3’ and ‘T3’ became active.
Furthermore, the enabled flags of the ChoicePanel have been initialized
with zero by calling ‘disable all()’ in the constructor.

• After the first step, an external event ‘C50’ was generated and inserted
into the queue.
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Figure 17: A trace leading to state ‘Water dispend’.
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Figure 18: LSC.

• This ‘C50’ event is dispatched in the second step and the CoinValidator
therefore moves to the state ‘have c50’. Here, the entry action is performed
which sets Water enabled to 1.

• After reaching the state ‘have c50’ in the third step, an external event
‘WATER’ is generated. The event is dispatched in the fourth step and
causes the ChoicePanel to enter the ‘Water selected’ state.

• Since ‘Water selected’ has an outgoing transition with an empty guard, the
object directly proceeds to the state ‘Request sent’. With this transition,
a ‘DWATER’ event was generated and sent to the DrinkDispenser.

• Again, we have an enabled outgoing transition and the ChoicePanel goes
back to the ‘Inactive’ state in the next step.

• Now the ‘DWATER’ event is processed by the DrinkDispenser which leads
to the statechart configuration ‘S3’, ‘W2’ and ‘T3’. An ‘OK’ event is sent
to the CoinValidator.

• The ‘OK’ is dispatched to the CoinValidator in the next step, which there-
fore enters the wanted state ‘drinkReady’.

Before starting the next verification task, the viewers have to be closed (only
then, the log in Rhapsody’s execution window is closed by “Done.”).

3.4.1 Drive to Configuration

“Spec::DriveToProperty” is an arbitrary C++ expression (according to appen-
dix A.7) thus for example the following expression could be used for a “drive-to-
configuration” task which asks for a system configuration where the CoinVal-
idator is in state ‘have c100 or e1’ and the ChoicePanel is in ‘Water selected’:
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root->p VendingMachine->itsCoinValidator->IS IN(have c100 or e1)

&& root->p VendingMachine->itsChoicePanel->IS IN(Water selected)

(only reachable, if two ‘C50’ coins are inserted).

3.4.2 On “Stutter” Steps

A transient state is a state with an outgoing transition without a trigger, e.g.
with a guard only. If a transient state is reached, the outgoing guards are only
evaluated at the beginning of the next step and if no guard holds, the system
stays in the current state and becomes stable, i.e. ends the run-to-completion
step. These stutter-steps are also visible in the generated traces.

In the VendingMachine example, there is no stutter step since all transitions
end at states where all outgoing transitions either have no guard and no trigger
(such that the run-to-completion step never stops there) or are all annotated
with triggers such that the state is not transient.

3.4.3 On “Unnecessary” Event Sendings in the LSC

For some paths generated by “drive-to” tasks, the LSC shows a cold event send-
ing, i.e. only the sending but not the reception happens during the considered
prefix of a run.

Cold events may even show up if they are not required, if the configuration
to drive to is already satisfied in the state which is the source of the transition
at which the observed event is sent. This is correct behavior of the ruve since
the configuration of attributes is considered together with event sending (cf.
sec. 3.2.1). If the system configuration to drive to is visited only for a single
step, and if leaving the system configuration causes an event to be sent, then
this event sending is always observed together with the attribute configuration.
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3.5 “Drive to Property”

1. Task:

Check, whether it is possible for the ChoicePanel that attribute
‘Soft enabled’ has a value of 1 while ‘Water enabled’ is still 0 if
any sort of coins and choice requests are sent from the environ-
ment.

2. Create a new configuration “VerifyDTP” within component “DefaultCom-
ponent”.12

3. Right-click on “VerifyDTP” in the browser and select “Features” to open
the features dialog.

4. Set up the “Initialization”- and “Settings”-tab as in sec. 3.4.

5. In the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class”
“Verification” and

• for “Spec” choose “DriveToProperty”

• set “Spec::DriveToProperty” to the C++ expression

root->p VendingMachine->itsChoicePanel->Soft enabled == 1

&&

root->p VendingMachine->itsChoicePanel->Water enabled == 0

(cf. fig. 19).

• set “ExternalEventTrace” to

root->p VendingMachine->itsCoinValidator, C50; \

root->p VendingMachine->itsCoinValidator, E1; \

root->p VendingMachine->itsChoicePanel, WATER; \

root->p VendingMachine->itsChoicePanel, SOFT; \

root->p VendingMachine->itsChoicePanel, TEA; \

to allow any sort of coins and choice requests (cf. fig. 20).

• set “ExternalEventModus” to “ndet”.

6. Make “VerifyDTP” the active configuration.

7. From the “Code” menu, select “Generate/Make/Run”.

8. Confirm to create a new directory for the new Configuration.

Finally a timing diagram and an LSC viewer pop up and show as a timing
diagram and an LSC a prefix of a run which leads to a system configuration in
which the wanted property holds (cf. fig. 21).

Remember to close the viewers before the next verification task.

12Configurations can be copied by holding down the Ctrl-Key and dragging the configuration
onto the Component node where it should be copied to.
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Figure 19: Denoting the property to drive to by a C++ expression.

Figure 20: External events.
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Figure 21: A trace leading to the wanted property configuration.
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3.6 “Invariance Check”

1. Task:

Check, whether the DrinkDispenser never runs out of drinks.
(This is (unfortunately) not an invariant of the model).

2. Create a new configuration “VerifyCI” of component “DefaultCompo-
nent”.

3. Right-click on “VerifyCI” in the browser and select “Features” to open
the features dialog.

4. Set up the “Initialization”- and “Settings”-tab as in sec. 3.4.

5. In the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class”
“Verification” and

• for “Spec” choose “InvarianceCheck”

• set “Spec::InvarianceCheck” to the C++ expression

!(root->p VendingMachine->itsDrinkDispenser->IS IN(Water out)

&&

root->p VendingMachine->itsDrinkDispenser->IS IN(Soft out)

&&

root->p VendingMachine->itsDrinkDispenser->IS IN(Tea out))

(cf. fig. 22).

• set “ExternalEventTrace” to

root->p VendingMachine->itsCoinValidator, C50; \

root->p VendingMachine->itsCoinValidator, E1; \

root->p VendingMachine->itsChoicePanel, WATER; \

root->p VendingMachine->itsChoicePanel, SOFT; \

root->p VendingMachine->itsChoicePanel, TEA; \

to allow any sort of coins and choice requests (cf. fig. 23).

• set “ExternalEventModus” to “ndet”.

6. Make “VerifyCI” the active configuration.

7. From the “Code” menu, select “Generate/Make/Run”.

8. Confirm to create a new directory for the new Configuration.

Finally a timing diagram and an LSC viewer pop up and show as a timing
diagram and as an LSC a counterexample, i.e. a prefix of a run which leads to
a system configuration where no more drinks are available. Since the resulting
trace contains about 80 steps, fig. 24 only displays the start and the end sequence
of it.

Remember to close the viewers before the next verification task.
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Figure 22: Denoting the property to check by a C++ expression.

Figure 23: External events.

33



...
...

...
...

Figure 24: Parts of a trace leading to a configuration with no drinks left.
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3.6.1 A true Invariant

An example of a true invariant is that having run out of water implies that
water is not enabled on the ChoicePanel:

This invariant can be checked using the following expression for “Spec::In-
varianceCheck”:

!root->p VendingMachine->itsDrinkDispenser->IS IN(Water out)

||

!root->p VendingMachine->itsChoicePanel->Water enabled

Recall that for a true invariant, no timing diagram and no LSC viewer pop
up, but the log in Rhapsody’s “Output Window” summarizes that the property
holds.
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3.7 The Pattern Library

The “drive-to-state”, “drive-to-property” and “invariance-check” tasks are in
fact instances of the specification pattern “inv P immediate” from the OFFIS
Pattern Library [OSC01].13

Actually all patterns from the pattern library are accessible from the ruve

by setting the corresponding Rhapsody properties. Property “Spec::Pattern”
selects a pattern by name. For the verification task, the necessary pattern
variables have to be bound. For every variable described in the pattern manual
[OSC01], there is a Rhapsody property like “Spec::Pattern::P Expr”.

The pattern manual [OSC01] documents which pattern requires which vari-
able and how this is already encoded in the pattern’s names.

1. Task:

Check, whether it is true that whenever a ‘C50’ coin is received
by the CoinValidator, then the attribute ‘Water enabled’ of the
ChoicePanel has a value of 1 one step later.
(This is not the case, since ‘Water enabled’ is not set if there is
no water in stock).

2. Create a new configuration “VerifyPAT” of component “DefaultCompo-
nent”.

3. Right-click on “VerifyPAT” in the browser and select “Features” to open
the features dialog.

4. Set up the “Initialization”- and “Settings”-tab as in sec. 3.4.

5. In the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class”
“Verification” and

• for “Spec” choose “PatternCheck”

• for “Spec::Pattern” choose “inv P implies finally Q B immediate”
(cf. [OSC01] for an in depth explanation of the corresponding tem-
poral logic formula)

• set “Spec::Pattern::max X Val” to 1 (for “one step later”), and set
“Spec::Pattern::P Expr” to the C++ expression

ER C50( ENV, root->p VendingMachine->itsCoinValidator )

(for “the CoinValidator receives a ‘C50’ event from the environment”)
and set “Spec::Pattern::Q Expr” to the C++ expression

root->p VendingMachine->itsChoicePanel->Water enabled

(cf. fig. 25).

• set “ExternalEventTrace” to

13 For “drive-to-state” and “drive-to-property” tasks, the negation of the property “Spec::
DriveToProperty” is used as P and for “invariance-check” tasks “Spec::InvarianceCheck” itself
is used as P , since if ¬P does not always hold, the model-checker generates as a counterexample
a prefix of a run which leads to a system configuration in which ¬P does not hold. But “not
¬P” is just P , i.e. the system configuration one wanted to drive to.
Consequently, if P never holds, then ¬P is true and thus the model-checker does not generate
an error path.
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root->p VendingMachine->itsCoinValidator, C50; \

root->p VendingMachine->itsCoinValidator, E1; \

root->p VendingMachine->itsChoicePanel, WATER; \

root->p VendingMachine->itsChoicePanel, SOFT; \

root->p VendingMachine->itsChoicePanel, TEA; \

root->p VendingMachine->itsDrinkDispenser, FILLUP; \

to allow any sort of coins and choice requests and filling up the ma-
chine.

• set “ExternalEventModus” to “ndet”.

6. Make “VerifyPAT” the active configuration.

7. From the “Code” menu, select “Generate/Make/Run”.

8. Confirm to create a new directory for the new Configuration.

Figure 25: Denoting the properties of the pattern to check by C++ expressions.

Finally a timing diagram and an LSC viewer pop up and show as a timing
diagram and as an LSC a counterexample, i.e. a prefix of a run where the
claimed property does not hold. Since the resulting trace contains about 30
steps, fig. 26 only displays the start and the end sequence of it.

Since the ruve produces a counterexample, it claims that the property does
not hold and in order to understand what “goes wrong” in the counterexample
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it is usually not sufficient only to look at the last state but one needs to identify
the points in time where parts of the specification hold or do not hold.

This is due to the fact that a “pattern-check” task usually refers to multiple
points in time in contrast to “drive-to” tasks where the timing diagram and
the LSC simply end at a configuration the system was supposed to drive to or
“invariance-check” tasks where typically the last state in a counterexample is
a state where the invariant does not hold. In the example, the specification
refers to a point in time where P (= the CoinValidator receives a ‘C50’ event)
holds and where Q (= the lamp for water is switched on) holds and states that
whenever P holds, then at most one step later the property Q holds.

With patterns of the “implies” form, one typically reads the counterexample
in both the timing diagram viewer and the LSC viewer backwards and expects
that in the last state the conclusion does not hold while there exists an earlier
state where the premise indeed holds, thus overall the implication is violated.

In the concrete example, considering the last state of the counterexample
in the timing diagram – since Q is rather a “configuration” property which
talks about variable values than an event communication property – shows that
the water lamp is not enabled (but disabled since step 24, cf. ➀ in fig. 26),
thus Q does not hold. Now reading the LSC backwards – since the P refers
to event communication – shows that the CoinValidator has indeed received a
‘C50’ event before (cf. ➁ in fig. 27). In particular considering the LSC shows,
that the event reception takes place in the last-but-one step, thus the last-but-
one step is a point in time where P holds but one step later Q does not hold,
thus the system does not satisfy the specification.

Reading the whole timing diagram (cf. ➂ in fig. 26) one finds that the reason
for this violation is simply that the vending machine runs out of water and thus
of course does not enable the lamp for water when a ‘C50’ is inserted.

Remember to close the viewers before the next verification task.
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➀

➂

...
...

...
...

Figure 26: Parts of a trace showing that sending ‘C50’ does not cause ‘Water selected’
to be set if the machine has no water in stock.
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➁

Figure 27: The sequence of events disproving the property shown as LSC.
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3.8 Assumptions

Assumptions are used to restrict the environment of model. In that sense, the
“ExternalEventTrace” property is already an assumption since it restricts the
type of events sent to the model. But with the “ExternalEventTrace” alone
is not possible to assume e.g. that the users of the VendingMachine insert
‘E1’ events only after inserting ‘C50’ before. Therefore the ruve also allows to
describe assumptions by the patterns introduced in section 3.7.

1. Task:

Check, whether it is true that whenever a ‘C50’ coin is received
by the CoinValidator, then the attribute ‘Water enabled’ of the
ChoicePanel has a value of 1 ten step later, assuming that a
‘FILLUP’ event is sent at most ten steps after one of the drinks
runs out of stock.
(On first sight, one expects this to hold, since events are only
sent from the environment if the machine is idle s.t. the ‘FILLUP’
always arrives just in time. But the outcome presented below
shows that the property happens to not hold for the special case
of the ‘Water enabled’ flag and the granted times.)

2. Create a new configuration “VerifyPATas” of component “DefaultCompo-
nent”.

3. Right-click on “VerifyPATas” in the browser and select “Features” to open
the features dialog.

4. Set up the “Initialization”- and “Settings”-tab as in sec. 3.4.

5. In the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class”
“Verification” and

(a) set up the property to be verified just as in section 3.7, except that
“max X Val” should now be 10 instead of 1, i.e.

• for “Spec” choose “PatternCheck” (as in section 3.7)

• for “Spec::Pattern” choose “inv P implies finally Q B immediate”
(as in section 3.7)

• set “Spec::Pattern::max X Val” to 10 (for “ten steps later”, other
than in section 3.7), and set “Spec::Pattern::P Expr” to the C++
expression

ER C50( ENV, root->p VendingMachine->itsCoinValidator )

(for “the CoinValidator receives a ‘C50’ event from the environ-
ment”, as in section 3.7), and set “Spec::Pattern::Q Expr” to the
C++ expression

root->p VendingMachine->itsChoicePanel->Water enabled

(as in section 3.7; cf. fig. 25).

• set “ExternalEventTrace” as in section 3.7 to allow any sort of
coins and choice requests and in particular filling up the machine.

• set “ExternalEventModus” to “ndet”.
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(b) state the assumption, i.e.

• for “Assumption1::Pattern” choose “inv P implies finally Q B immediate”

• set “Assumption1::Pattern::max X Val” to 10 (for “ten steps
later”), and set “Assumption1::Pattern::P Expr” to the C++
expression

root->p VendingMachine->itsDrinkDispenser->IS IN(Water out)

||

root->p VendingMachine->itsDrinkDispenser->IS IN(Soft out)

||

root->p VendingMachine->itsDrinkDispenser->IS IN(Tea out)

(for “some drink is out of stock”),
and set “Assumption1::Pattern::Q Expr” to the C++ expression

ER FILLUP(ENV, root->p VendingMachine->itsDrinkDispenser)

(for “the DrinkDispenser receives a ‘FILLUP’ event from the
environment”).

6. Make “VerifyPATas” the active configuration.

7. From the “Code” menu, select “Generate/Make/Run”.

8. Confirm to create a new directory for the new Configuration.

Finally a timing diagram and an LSC viewer pop up and show as a timing
diagram and as an LSC a counterexample, i.e. a prefix of a run in which the
vending machine is filled up within 10 steps, but where the last ‘C50’ does not
cause the lamp for water to be switched on within 10 steps due to a bug in
the design: after fillup, the water lamp is not enabled if the CoinValidator is in
state ‘have e1’, since then there would be no money to give back change. But
this state is not only reachable by inserting an ‘E1’, but also by the sequence
shown in trace, since ‘have e1’ is the default state within ‘have c100 or e1’.

Note that this counterexample is also a counterexample for the case without
the assumption, but is not necessarily produced, since the model-checking al-
gorithm usually finds the shortest and “simplest” path. In this case, the result
is usually a trace where the machine simply runs out of water without filling it
up.

Figure 28 displays only the end sequence of the trace starting from the state
where the machine runs out of water, since the trace contains nearly 40 steps,

Remember to close the viewers before the next verification task.

The other assumptions, “Assumption2” and “Assumption3”, are used analo-
gously to the example. All assumptions with a “::Pattern” different from “none”
are considered in conjunction and it is checked whether the conjunction of the
assumptions implies “Spec”.

Assumptions can also be used together with Drive-to tasks but not with
temporal-logic.
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Figure 28: Parts of a trace showing that sending ‘C50’ does not cause ‘Water selected’
to be set if the CoinValidator is in state ‘have e1’ when the machine is filled up.
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Figure 29: The sequence of events disproving the property shown as LSC.
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3.9 Verify a LSC specification

The ruve is able to verify UML models against a specification in form of a
“Life Sequence Chart” (LSC, [DH01]). Currently, the LSC has to be of the
“static binding” kind, that is, all instance lines are bound to a concrete object
of the model, which must not change during the run of the system. Future
implementations will comprise dynamic bindings as described in [DW03, KW02].
For the semantics of LSCs we refer to [Klo03, DW03].

1. Task:

Check, whether it is true that whenever a customer wants to
buy a water drink (thus, inserts at least one ‘C50’ coin, then
possibly other coins, followed by requesting a ‘WATER’) and
the vending machine is not out of water drinks, then a water is
prepared and dispensed to the customer.

2. Create a new configuration “VerifyLSC” of component “DefaultCompo-
nent”.

3. Right-click on “VerifyLSC” in the browser and select “Features” to open
the features dialog.

4. Set up the “Initialization”- and “Settings”-tab as in sec. 3.4.

5. In the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class”
“Verification” and

• for “Spec” choose “LifeSequenceChart”

• set “ExternalEventTrace” to

root->p VendingMachine->itsCoinValidator, C50; \

root->p VendingMachine->itsCoinValidator, E1; \

root->p VendingMachine->itsChoicePanel, WATER; \

root->p VendingMachine->itsChoicePanel, SOFT; \

root->p VendingMachine->itsChoicePanel, TEA; \

root->p VendingMachine->itsDrinkDispenser, FILLUP; \

to allow any sort of coins and choice requests and filling up the ma-
chine.

• set “ExternalEventModus” to “ndet”.

6. Make “VerifyLSC” the active configuration.

7. From the “Code” menu, select “Generate/Make/Run”.

8. Confirm to create a new directory for the new Configuration.

Right after starting the verification, the LSC editor “LSCEdit” pops up in
order for the specification to be drawn. Thus in contrast to the other speci-
fication kinds, e.g. patterns, the specification is not entered and stored as a
set of “Properties”, but stored in two separate files which are edited using the
LSCEdit.
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Figure 30: The pre-chart of the LSC. The local invariant reads:
“!(ER WATER(ENV, root->p VendingMachine->itsChoicePanel) ||

ER SOFT(ENV, root->p VendingMachine->itsChoicePanel) ||

ER TEA(ENV, root->p VendingMachine->itsChoicePanel))”

Figure 31: The main chart of the LSC specification.
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In the following we briefly recall the intuition of an LSC corresponding to
this section’s verification task and then provide a step-by-step guide how the
LSC is drawn using the LSCEdit.

The LSC for this task consists of a pre-chart (depicted in fig. 30) and a main
chart (depicted in fig. 31). The specification reads as follows:

[pre-chart] Whenever the machine receives a ‘C50’ followed by a
‘WATER’, and between these two events no other drink request are
received (thus, the first C50 coin is indeed used to buy the water),
and when receiving the ‘WATER’ the vending machine is not out
of water drinks, then [main chart] finally a ‘DWATER’ event is
produced internally, directly followed by an ‘OK’ event.

To create this specification in the LSCEdit the following steps are needed:

1. Set “Name” to “spec pc” and “Activation” to “true”, activate the “PRE-
CHART” radio button, switch “Mode” to “Iterative”, and click “Okay”.

2. Choose “Elements → Add Instance”, set “Name” to “ENVIRONMENT”, and
click “Okay”.

3. Add two more instances with names
“root->p VendingMachine->itsCoinValidator : CoinValidator”
and
“root->p VendingMachine->itsChoicePanel : ChoicePanel”14.

4. Choose “Elements → Add AsyncMessage”. You will see a couple of dots
appearing on the instance lines to which we refer to as “locations”.

5. Click on the second location of the “Environment” instance, then on the
fourth location of the “CoinValidator” instance.

6. In the following dialog, set “Name“ to “C50”.

7. Add another async message, from the fourth location of “Environment”
to the 8th location of the “ChoicePanel” instance, with “Name” set to
“WATER”.

8. Choose “Elements → Add condition” and click on the 8th location of
“Environment”, then on the 8th location of “CoinValidator”, and then
right -click on the 8th location of “ChoicePanel”.

9. Set “Expression” to
“!root->p VendingMachine->itsDrinkDispenser->IS IN(Water out)”
and “Condition” to “Hot”, then click “Okay”.

10. Choose “Elements → Add local invariant”, then first click on the fourth
location, and afterwards on the 8th location of the “CoinValidator”.

11. Set “Expression” to
“!(ER WATER(ENV, root->p VendingMachine->itsChoicePanel)

|| ER SOFT(ENV, root->p VendingMachine->itsChoicePanel)

|| ER TEA(ENV, root->p VendingMachine->itsChoicePanel))”.

14an instance name must either be “ENVIRONMENT” or of the form
“<object-navigation-expression> : <class>”
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12. Set “Temperature” to “Hot” and both “Top” and “Bottom” to “Exclu-
sive”, then click “Okay”.15

13. The pre-chart is now finished, so choose “File → New LSC” to start the
main chart.

14. In the dialog, set “Name” to “spec”, “Activation” to “true” and “State”
to “universal”.

15. Click on “Edit” next to the (currently empty) list of “pre-charts” and
activate “spec pc”

16. Close both dialogs by clicking “Okay”.

17. In the main chart, add three instances with names
“root->p VendingMachine->itsChoicePanel : ChoicePanel”
“root->p VendingMachine->itsDrinkDispenser : DrinkDispenser”
“root->p VendingMachine->itsCoinValidator : CoinValidator”,
all of them with “Start Temperature” set to “Hot”.

18. Draw an async message “DWATER” from the second location of “Choi-
cePanel” to the fourth location of “DrinkDispenser”.

19. Draw an async message “OK” from the fourth location of “DrinkDispenser”
to the sixth location of “CoinValidator”.

20. That’s it. Choose “File → Save LSCDocument” to save the LSC.

All elements of the LSC can be deleted, modified or moved within the LSC
editor. Please see the online help (“Help → Mini Help”) for some explanation.

If you now close the editor, the verification will continue automatically.
When you start the verification of the “VerifyLSC” configuration the next time,
the saved LSC will be loaded and you can change the specification or simply
close the editor without modifications.

Finally a timing diagram and an LSC viewer pop up and show as a timing
diagram and as an LSC a counterexample. Since the resulting trace contains
about 40 steps, fig. 32 only displays the start and the end sequence of it.

The ruve has detected that the specification does not hold, thus it shows
a run of the system where the prechart is traversable, but the main chart is
violated. In the resulting LSC (fig. 33) we see three times the same sequence
of ‘C50’, ‘WATER’, ‘DWATER’, ‘OK’ events, thus the machine is out of water
drinks now (i.e., in the corresponding timing diagram, the statechart config-
uration of the DrinkDispenser in step 25 reads “S3, Water out, T3”). The
following ‘C50’ event is the entry point of the pre-chart traversation. After
a sequence of ‘C50’, ‘E1’, ‘FILLUP’ (which do not violate the local invariant
within the pre-chart), the ‘WATER’ is the next event which has to be observed

15This local invariant needs some explanation: What we actually want to specify is that
between the ‘C50’ and ‘WATER’ no other drink selections are sent. Since the sending point of
external events is not visible in the expression language (cf. A.7.1), we move the local invariant
to the “CoinValidator” and talk about the reception of external events. Alternatively (and
more generic) we could add a shared condition “true” on locations number four of both
the “CoinValidator” and “ChoicePanel”, and draw the local invariant between the dummy
condition and the reception of ‘WATER’ (locations four to eight) of the “ChoicePanel”.
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for fulfilling the pre-chart. On reception time of the ‘WATER’ event, the ma-
chine is not out of water (due to the previous ‘FILLUP’), thus the pre-chart is
completely traversed.

Now that the pre-chart has been observed, the trace LSC shows a violation
of the liveness property of the main chart, i.e. an infinite sequence of ‘WATER’
requests16, which does not finally produce the ‘DWATER’ and ‘OK’ events.

In order to see why the ‘WATER’ event of the pre-chart does not dispend
a water, we take a look at the statechart of the CoinValidator (fig. 3(a)). The
sequence of two ‘C50’ events leads to the state ‘have c100’. An ‘E1’ causes first
the self loop of ‘have c100 or e1’ and then the default transition to ‘have e1’ to
be taken. Hence the machine still has calculated the right amount of money,
but it has lost the information that it actually has received two C50 coins rather
than one E1 coin.

The following ‘FILLUP’ invokes the ‘update choicePanel()’ method which is
responsible for activating the drink-enable-flags. But since the machine “thinks”
it has only a single E1, the ‘Water enabled’ is not set, because the machine would
not be able to give back the right amount of change. The following ‘WATER’
events now do not trigger any drink dispensing since the corresponding guard
is not evaluated to true in fig. 3(b).

Remember to close the viewers before the next verification task.

16which by accident emulate an “angry customer”, impatiently hammering on the water
button
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Figure 32: Parts of a trace disproving the specified property.
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Figure 33: The sequence of events disproving the property shown as LSC.
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3.9.1 LSCs in Omega LSC XML format

A Live Sequence Chart specification can not only be entered using the LSCEdit,
but also imported if it is provided in the Omega LSC XML format [OFF04]. It is
then first translated into the format of the LSCEdit and can be edited using the
LSCEdit before the verification run starts.Once the XML file has been translated
once and edited using the LSCEdit, it is only re-translated if it is changed later
and thus newer than the files in LSCEdit format. The user is then prompted
by the ruve whether the LSCEdit files should be kept or re-generated.

Using an XML file, for example lsc.xml, for LSC verification requires the
following actions:

1. Create a new configuration and set it up for LSC verification just as out-
lined in sec. 3.9.

2. Additionally, in the “Properties”-tab, select “Subject” “CPP CG” and
“Meta Class” “Verification” and

• change “Spec::LSC::Source” to “Omega LSC XML” and

• in “Spec::LSC::Omega LSC XML File” enter the name of the XML
file, in the example lsc.xml.
The filename may be given as an absolute path or relative to the
configuration directory, i.e. if the value of

“Spec::LSC::Omega LSC XML File”

is just lsc.xml, then this file is searched for at the same location
where Rhapsody writes the generated code for the configuration to.

3. When starting the verification run by selecting from the “Code” menu
the entry “Generate/Make/Run”, first the XML is translated into the
format of the LSCEdit and then an LSCEdit is started as with regular
LSC verification described in sec. 3.9.

Appendix C provides a complete description of the relation between “Spec::LSC::Source”
of “Omega LSC XML” and “LSCEdit” in terms of the affected files.

Note that, independent from the kind of verification task, there is also an
Omega LSC XML representation of the counterexample generated whenever a
counterexample exists.
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3.10 Temporal Logic

For internal use only.
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3.11 Checking Memory Bounds

The ruve has a builtin verification task called “CheckMemoryBounds” which can
be found in the “Spec” list of the verification properties. After having performed
the global settings as described in section 3.3 and defined an appropriate list of
external events, this task can be started just like a “normal” verification task
by invoking Generate/Make/Run.

The verification checks whether any “overflows of event queues” or any “out
of memory errors” may occur in the model’s behavior. If this is the case, an
example trace shows the exact step and the class where such an error happened.
Often these errors results from too optimistic settings for the event queue length
or event quantities (cf. sec. 3.2.2).

The statechart depicted in fig. 34 will cause such a memory bound violation
when running with an event queue of length 1. The timing diagram in figure 35
shows that generating a second event of type ‘Ev’ in the third step (when the
first event is still in the queue) leads to both a “queue overflow” and an “out of
memory” error.

Figure 34: Erroneous statechart.

Figure 35: A trace showing memory bounds violations in step 3.
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3.12 Performance Tuning

The examination of the complete state space and behavior relation of a dynamic
model is a complex task, leading to time- and memory-consuming verification
runs. The following guidelines may give some hints to speed up the verification:

• The event settings described in section 3.2.2 should be as aggressive as
possible. Whenever it turns out to be necessary to increase the event
queue length, one should always re-consider the quantity of event classes
since the default quantity is the length of the event queue (verification
property “MaxEventQuantities’, cf. paragraph 3.2.2).

• To avoid the need for ‘OMStartBehaviorEvents’ you should try to design
your statecharts such that they are stable after taking the default transi-
tion (cf. paragraph 3.2.2).

• ruve works with a bounded range for integer values. This range should be
chosen as small as possibly (verification properties “IntegerLowerBound”
and “IntegerUpperBound”).

• Currently, the usage of triggered operations is expensive. Thus one im-
plement the intended behavior using asynchronous event communication
and primitive operations whenever possible.

• Setting the concurrency mode of classes to “active” obviously increases the
number of possibles runs due to the different possibilities of scheduling.
Keep in mind that there is always one active thread called “OMDefault-
Thread” started by Rhapsody – hence explicitly defining one active object
per model is redundant.

• Declare class attributes local to methods if they are exclusively used there
and need not be referenced in a specification.

• Arithmetic operations on attributes increase the behavioral space – this
is especially true for multiplication and division.

• StrongAggregation (composition) should be preferred over WeakAggrega-
tion since the composition relation has a “constant character” in the world
of a model-checker.

• Of course the overall “size” of the model (that is (among other things)
the number of objects including events, number of attributes, size of the
statechart) should be as small as possible.

• A critical point in a verification run is the translation of the model into
a finite state machine and its representation as a BDD (binary decision
diagram, [Bry86]). Crucial for efficient model-checking is a good ordering
of the variables (which results in a “small” BDD). For finding a good or-
dering, several strategies were developed and implemented (see [Som98]
for an overview). The default strategy of ruve is “Sift”, which performs
best in most of the cases. If the reordering takes an extraordinary amount
of time, it is worthwhile to try out different strategies by setting the veri-
fication property “ReorderingStrategy” to the desired value. Experiments
show that “Random”, “SymmSift” and “Window4” perform very well in
special cases.
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• As described in section 1.2, contemporary hardware is recommended, i.e.
at least 1 GByte of memory and at least 500 MHz processor-clock.
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3.13 Remote Verification

If there is a UMLVERIFROOT installation on a remote host with ssh(1) service,
then the verification task can be divided into

1. C++ code-generation and accessing the Rhapsody API locally,

2. copying the relevant files to the remote host,

3. execute the verification task on the remote host,

4. if a trace has been generated, copying the trace to the local host and
starting the viewer locally.

This might be useful if the local machine is slow and there is a fast verification
host at hand or the local machine should not be blocked by the verification task.
Furthermore, the remote copies can be used to re-execute all existing verification
tasks on the remote host in batch mode by copying the all new relevant files to
the remote host, execute all remote RUN.sh from a script on the remote host,
and copy back all generated traces.

1. Task:

Execute the same task as “VerifyCI” remotely on host vhost as
user vuser in directory /tmp (cf. sec. 3.6).

2. Create a new configuration “VerifyCIremote” of component “DefaultCom-
ponent”.

3. Right-click on “VerifyCIremote” in the browser and select “Features” to
open the features dialog.

4. Set up the “Initialization”- and “Settings”-tab as in sec. 3.4.

5. Right-click on “VerifyCIremote” in the browser and select “Features” to
open the features dialog.

6. Set up everything as for “VerifyCI” in sec. 3.6.

7. In the “Properties”-tab, select “Subject” “CPP CG” and “Meta Class”
“Verification” and

• set “RemoteHost” to “vhost”, the name of the remote host,

• set “RemoteUser” to “vuser”, the name of the account on the remote
host,

• set “RemoteTmp” to “/tmp”, the name of the directory below which
the directory structure for relevant and temporary files should be
established on the remote host (see below for an example),

• set “RemoteUmlVerifRoot” to the path of the UMLVERIFROOT on
vhost, e.g.

/opt/local/〈DATE〉-uve-release-〈RELEASENR〉

• set “RemoteGCC” to the name of the GNU C-compiler command,
usually simply “gcc”
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• set “RemoteGNUToolsPath” to the path to the GNU tools on the
remote host followed by a colon (“:”). If the GNU tools are in the
PATH anyway on the remote host, then this property may be left
empty.

• set “MAKETARGET” to “verify remote”.

Note that all these properties except for MAKETARGET are best set up
globally (cf. sec. 3.3) if the setup for remote verification is not supposed
to be the same for all verification tasks.

8. Make “VerifyCIremote” the active configuration.

9. From the “Code” menu, select “Generate/Make/Run”.

10. Confirm to create a new directory for the new Configuration.

11. Confirm to run the newly created executable (which is in fact an .bat

file).

Then an MS-DOS command window pops up and ssh(1) prompts for the
password of vuser on vhost and

• sets up the directory

vhost:/tmp/vuser/TheVendingMachine/DefaultComponent/VerifyCIremote/

• copies the relevant files to the newly created remote directory,

• executes the verification command RUN.sh on the remote host, and

• if the run results in a trace, copies it back to the local host.

If a trace has been generated, a timing diagram and an LSC viewer pop up
locally as usual.
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3.14 “Reviewing” and Saving Traces

All temporary files of the verification run, and in particular the generated traces,
are written into the target directory of the configuration, i.e. the same place
where the generated C++ code goes to.

Once the timing diagram and LSC viewers have been closed, the trace can
be viewed by the following steps:

1. In the cygwin-bash, change to the directory of the configuration, e.g.

cd UMLVERIFROOT/examples/TheVendingMachine/DefaultComponent/VerifyDTS

2. There are two possibilities to make the cygwin-bash aware of the location
of the helper tools needed by the timing diagram viewer. Either set the
environment variable

export UMLVERIFBIN=UMLVERIFROOT/bin/cygwin

or extend your PATH variable

export PATH=UMLVERIFROOT/bin/cygwin:$PATH

(These settings can be made permanent by including them into the per-
sonal .bashrc.)

3. Then simply call

UMLVERIFROOT/bin/cygwin/reviewtrc.sh

which displays the latest automatically generated trace in the current
directory as timing diagram and LSC.

To save traces, change to the directory of the configuration and copy the files

prop.trc.td

prop.trc.map

prop.trc.lsc

prop.trc.xml

to another directory.17 The trace and LSC can be viewed by calling

UMLVERIFROOT/bin/cygwin/reviewtrc.sh THE COPY

from the cygwin-bash if UMLVERIFBIN or PATH have been set as in step 2
above. Here THE COPY refers to the full path to the newly created copy of
the .td file.

17prop.trc.xml is the Omega LSC XML [OFF04] representation of the trace.
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A Supported Rhapsody

A.1 Components and Configurations

The “unit of verification” is a “Configuration” of a “Component” of a “Project”,
thus “Components” for verification

• should not contain anything other than a “Configuration” (thus no “Fol-
ders” or “Files” etc.), and in particular

• must not contain nested “Components”.

A.2 Packages and Namespaces

• The system to be verified must be contained in a single package.

• A class must not have the same name as the project.

• Namespaces must not be used explicitly in the user code.

A.3 Object Model Diagram

An Object Model Diagram may contain:

• Classes,

• Class hierarchies with single inheritance,

• Directed or undirected associations between classes of a fixed multiplicity
N ,

• Compositions and Aggregations with a fixed (part-)multiplicity N .

Note that although the aggregation relation has no special semantics, its
multiplicity serves as an indication on how many objects are created at most.
This is similar to the composition relation – with the difference that these parts
are created when the compound object is created and destructed when the
compound object is destructed.

Thus, both relations together determine a maximum amount of internal
memory to represent runtime objects. Simple association relations do not in-
fluence this computation, they only provide the possibility to store “existing”
objects at their link ends.

A.4 Statecharts

A Rhapsody Statechart may contain:

• Basic states, OR-states, AND-states.

• Default states.

• Transitions (according to sec. A.6).

• Condition connectors.

• History connectors.
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• Termination connectors.

• Simple fork and join connectors, i.e. transitions which split to reach multi-
ple destinations in different compartments of an AND-state or transitions
which originate at multiple sources in different compartments of an AND-
state (not junction connector).

• Diagram connectors and sub-machines.

States may have entry-actions and exit actions.

A.5 Event-Queue

At the moment, an event queue with a fixed length N is supported (see sec-
tion 3.2.2). The behavior in case of a queue overflow is undefined, i.e. the
outcome may be anything from “the property holds” to arbitrary traces. If a
trace was produced, a special waveform called ERROR::queue overflow will in-
dicate the exact step where the overflow occurred. Unfourtunatly, if the overflow
happens in the initialization step of the system (i.e. when the default transition
of the starting objects are taken), the overflow error is not visible in the trace
(since the init step is not visible).

A.6 Transitions Annotation

The annotations of transitions have Rhapsody’s usual form of:

Trigger [ Guard ] / Statementlist

Trigger is the name of an event class, but not a time event (“tm()”). Guard is
an expression according to A.7 of type int.18 Both Trigger and Guard (together
with the square brackets) may be missing.

A.7 Expressions

An Expression can be one of:

• a decimal literal,

• a variable or constant name,

• an attribute access of the form

Attributename or Variable->Attributename

where Variable is of pointer-to-object type,
To access attributes of other objects, the get/set methods should be used
(see below).

• a call of a primitive or triggered operation (but see section A.11 below for
restrictions) of the form

Methodname or Variable->Methodname

18the expression 1 == 2 is considered to be of type int
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where Variable is of pointer-to-object type,
The methods generated by Rhapsody to get/set attributes can be used.

• a state query of the form

IS_IN(State) or Variable->IS_IN(State),

where State is the name of a state as shown in the Statechart in Rhapsody
and where Variable is of pointer-to-object type,

• an application of a unary operator of the form

op Expression,

if Expression is of type int and op is one of:

!, -

• an application of a binary operator of the form

Expression op Expression,

if both Expressions are of type int and op is one of:

||, &&,
+, -, *, /,

<, <=, ==, !=, >=, >

• a conditional expression of the form

Expression ? Expression1 : Expression2

where Expression is of type int and Expressioni are both of the same
pointer-to-object type or of type int.

Note that (unlike for C++) we consider as expressions only those terms
which do not have side-effects and that expressions cannot be used on the left
hand side of an assignment.

Overflows in expressions should be avoided. Since for model-checking the
range of integers is significantly reduced compared to 32- or 64bit-values on
real targets, the behavior of the model in case of overflows may not match the
behavior of execution on a real target (cf. sec. A.9).

A.7.1 Property Expressions

A property expression is an expression used as the value of a Rhapsody property
which take C++ expressions as specifications, for example “Spec::DriveToPro-
perty”.

Property expressions must not contain a C++ conditional expression ((?:))
or a unary minus19 since they are not supported for property expressions.

In addition to plain C++ expressions (excluding conditional expression and
unary minus), property expressions may contain

19workaround: write (0-a) instead of -a
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• event send/receive queries of the form

(ES_|ER_)〈Event〉(〈Sender〉, 〈Receiver〉[, 〈Parameterlist〉])

where 〈Event〉 is the name of an event class, and 〈Sender〉 and 〈Destination〉
are navigation expression starting at ‘root’ (cf. sec. 3.4), or ENV denot-
ing the sender and receiver to be observed. 〈Parameterlist〉 is a (possibly
empty) comma-separated list of actual event parameter values to be ob-
served. This list must exactly match the number and the order of the
formal parameters of event 〈Event〉.

Event send queries start with ES_, event receive queries start with ER_.
It is not possible to observe the sending point of an external event, only
the point in time of reception – thus, ER_〈Event〉(ENV, 〈Receiver〉) is ok
while ES_〈Event〉(ENV, 〈Receiver〉) is forbidden.

• state changed queries of the form

〈Object〉->STATE_CHANGED_(TO|FROM)(〈statename〉)

where 〈Object〉 is a navigation expression to a reactive object starting at
‘root’ and 〈statename〉 is a name of a state of 〈Object〉’s statechart. For
instance

root->p C->STATE CHANGED TO(st)

becomes true if the object ‘p C’ has entered state ‘st’ and was at some
state different from ‘st’ in the previous step, and

root->p C->STATE CHANGED FROM(st)

becomes true if the object ‘p C’ was at state ‘st’ in the previous step and
now has entered some state different from ‘st’.

Note that these queries do not talk about entering or exiting states in full
consequence, since they do not become true when taking self-loops (that
is why we call them state change queries).

A.8 Statements

A Statement is one of:

• an expression according to sec. A.7

• an assignment of the form Variable = Expression, an assignment of the
form

Variable op Expression,

where op is one of:

=, +=, -=, *=, /=
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• a pre- or postincrement of the form

op Variable or Variable op

where op is one of:

++, --

• a sequential composition Statement ; Statement ,

• a block { Statement },

• a conditional statement if Expression Statement else Statement ,

• an event sending

GEN(Event Parameterlist) or Variable->GEN(Event Parameterlist),

where Event is the name of an event class, Parameterlist is a possibly
empty list of parameters matching the signature of a constructor of Event
and where Variable is of pointer-to-object type.

Switch statements and any kinds of loops are not supported yet.

A.9 Data Types

Constants, attributes, local variables, method parameters and return values can
have a type of:

• int,

• pointer-to-object, e.g. VendingMachine*.

Methods (but not triggered operations) can have return type void.
Type bool is not supported because Rhapsody does not offer it in the choice

list of predefined types on which the ruve depends.

Only functions can have local variables and the local variables must be declared
in the outermost block of the function, thus for example the if-block of a
conditional statement cannot have its own local variables.

Local variables must not have the same name as a parameter (no “shadow-
ing”).

Structured types (other than classes) are not supported yet.

The value range of the int type can be controlled by the properties
“CPP CG”/“Verification”/“IntegerLowerBound” and “IntegerUpperBound”.
Default is the range −64 . . .63 which could cause the model-checking task to
run out of memory (or time) if there are many attributes of type int in the
model. The range can then be reduced to a smaller range which is still sensible
wrt. to the model. The right bound must not be smaller or equal than the left
bound.
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state_1 state_2

[x == 0]/itsC->f()

[x != 0]/itsC->f()

(a) Unsupported Statechart

state_1

state_2

state_1a

state_1b

[x == 0]/ /itsC->f()

[x != 0]/ /itsC->f()

C

(b) Transformed Statechart

Figure 36: For each state, the triggered operation calls within all action parts on
outgoing transitions of this state shall be to triggered operations with different names.

A.10 Methods

Methods can have parameters, return values, and local variables of types accord-
ing to sec. A.9 and as body a statementlist according to sec. A.8. Overloading20

is not yet supported.

A.11 Triggered Operations

A triggered operation may have parameters and return values of types according
to sec. A.9, but the return value may not be of type void.

Calls of triggered operations may occur anywhere in the action part of a
transition within a statechart, but not within a primitive operation.

Any number of outgoing transitions or static reactions may contain triggered
operation calls in their action part and there may be any number of triggered
operation calls within a single action part (including entry- and exit-action) as
long as they all have different names.

For example, the statechart depicted in figure 36(a) is not supported since
triggered operation ‘f()’ is called on both outgoing transitions. Cases of this type
can usually be worked around by inserting additional states like, for example,
the statecharts in figure 36(b) is supported and even keeps the property that
IS IN(state 1) evaluates to true until ‘state 2’ is reached.

Triggered operations are internally mapped to event communication. For
each triggered operation of each class, an event class called

〈triggered operation name〉 〈class name〉 Event

is introduced to the model. This event is able to carry actual event param-
eters of the triggered operation as well as the reply value.

A call of the operation is then realized by sending an event of this class,
whereby the event is put in front of the callee’s event queue. After the callee
has consumed this event, the execution of the ‘reply()’ statement will set the
reply value, and will sent the event back to the caller.

This mechanism allows to specify triggered operations as part of the re-
quirement in terms of asynchronous event communication. Currently, it is not
possible to specify the reply value, only the actual parameters are visible.

20multiple methods with the same name but different signatures
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C_state_0C_state_0

Go/itsD->TO(1,2)

D_state_0D_state_0

TO/reply((params->p2)+1);

Figure 37: statechart of classes C and D

As an example, consider a simple model with two classes C and D, and a trig-
gered operation ‘TO()’ with two formal parameters p1 and p2. The statecharts
of C and D are shown in figure 37.

A LSC specification which requires that the triggered operation ‘TO()’ finally
occurs is displayed in figure 38. Note that

• the event reception of the “call event” and the sending of the “reply event”
has to be specified simultaneously, since the ‘reply()’ statement is executed
in the action part of the trigger reception in fig 37(b),

• both the “call event” and the “reply event” have to carry the actual pa-
rameters of the call,

• even if the reply value is not directly visible, it can of course be stored in
a class variable which then can be used in the specification.

The witness-trace and -lsc are also talking about the newly introduced event
class. For your convenience, the resulting LSC is patched such that it shows the
actual parameters in the “call event”, but indeed the reply value in the “reply
event” (cf. fig. 39).

A.12 The “gray zone”

Note that appendix A presents the features of Rhapsody and C++
which are “known to work” whereas the document [OFF03a] lists the
features of Rhapsody and C++ which are “known not to work”.

Both documents are not complementary, i.e. there is a “gray zone”
in between. Entering the “gray zone” is on own risk, since the ruve

as a research prototype is not always able to recognize unsupported
features and may produce completely unpredictable output.
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Figure 38: An LSC specifying the occurrence of ‘TO()’

Figure 39: A witness LSC showing the occurrence of ‘TO()’

67



B Troubleshooting

Symptom: “Generate/Make/Run” immediately fails, saying something like
“missing separator”.

Diagnosis: A trailing backslash in one of the external event lines in property
“ExternalEventTrace” is missing (see section 3.4).

Symptom: “Generate/Make/Run” finishes immediately, saying something about
“Code Generation done. 0 Error(s), 0 Warning(s), 0 Message(s)”.

Diagnosis: Possibly you forgot the close the trace viewers which popped up
after the previous run of ruve.

Symptom: Verification stops immediately and complains about missing files.

Diagnosis: Make sure that CPP CG::Verification::MAKETARGET is set to
’verify’ in order to invoke the complete verification run (ie. model-generation,
model-checking, and trace-generation). ’verify only’ is only possible if
you have already performed a verification on this configuration with flag
CPP CG::Verification::KeepIntermediateFiles set to ’true’.

Symptom: Model-generation fails, the last output talks about “rhap2ssl”.

Diagnosis: Possibly the used version of Rhapsody is not an officially supported
one (see section 1.1).

Symptom: Model-generation fails, the last output talks about a “C++ frontend-
error” which is concretized earlier in the output as
“OMNotifier::notifyToOutput(”Internal error – no last state in history”’)”.

Diagnosis: One of your history connectors seems to have no outgoing tran-
sition (which serves as a default transition when no history information
is available). It is also necessary that all sub-composite states within a
composite state containing a history connector contain also a history con-
nector, that determine a default transition when no history information is
available.

Symptom: Model-generation fails, the end of the output talks about “Begin
Compile merged” and at the end of the output a warning and an error are
reported, the warning with message
“Cant resolve the Designator \rootState subState\ in Context ENTITY
WORK.\PACKAGE ::CLASS\” and the error with message “Argument
>SSLNamePtr name< is a NULL Pointer” and PACKAGE is equal to
CLASS in the first message.

Diagnosis: Possibly the design does not adhere to the recommendations of
section A.2, but uses the same name for both a package and a class within
the package. Renaming either the package or the class should then solve
the issue.

Symptom: The outcome of ruve is completely unexpected, e.g. the trace seems
not to be related to the property at all or ruve says, the property holds,
although it is expected to be false.

Diagnosis: Possibly ruve erronously re-uses files from a previous run. Try to
rename (or remove) the configuration’s directory by hand and re-start the
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ruve.

If the task uses assumptions, check whether the assumption does not eval-
uate to false, since then every property holds. This can be checked by
setting the Specification to false (i.e. set “Spec” to “InvarianceCheck”
and “Spec::InvarianceCheck” to “false”) – if ruve still reports that the
property holds, then the assumption is suspicious.

To be continued...

69



C Technicalities

LSC source LSCEdit vs. Omega LSC XML

This section describes the mechanism behind the values “LSCEdit” and “Omega
LSC XML” of property “Spec::LSC::Source” (cf. sec. 3.9).

An LSC specification consists of two files,

• a so called LSC file, which contains the structural information, i.e. in-
stance lines, messages, conditions, etc., and

• a so called Maptab file, which contains a mapping table, that provides the
mapping, like the C++ expression for a condition or the event annotation
of messages.

For the configuration “VerifyLSC” of section 3.9, these files are expected
in the same directory where the directory VerifyLSC, into which Rhapsody
generates the C++ code of the configuration, is located under the names:

• VerifyLSC.lsc and

• VerifyLSC.map.

In the example of section 3.9 this is

• . . . /TheVendingMachine/DefaultComponent/VerifyLSC.lsc resp.

• . . . /TheVendingMachine/DefaultComponent/VerifyLSC.map.

When the “Spec::LSC::Source” (cf. sec. 3.9.1) is set to “LSCEdit”, then the
LSCEdit operates on these files, thus it will in particular store the drawn LSC
directly at that location.

When the property “Spec::LSC::Source” is set to “Omega LSC XML”, then
the translation of the file given in “Spec::LSC::Omega LSC XML File” is also
stored into these two files and then the LSCEdit is run on them for final adjust-
ments of the specification.

This “adjusted” specification is kept as long as the XML source does not
change; when the XML file is newer then the two files, then the user is prompted
whether to keep the files or to re-translate the XML. If the XML should not
be re-translated, the prompt can be suppressed by setting “Spec::LSC::Source”
to “LSCEdit”, and if the result of the translation should not be opened with
LSCEdit on each verification run, running the LSCEdit can be suppressed by
additionally setting property “Spec::LSC::runLSCEdit” to “False”.21

21property “Spec::LSC::runLSCEdit” has no effect when “Spec::LSC::Source” is set to
“Omega LSC XML”!
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The Rhapsody UML Verification Environment

Restrictions
Revision : 1.40

To apply the Rhapsody UML Verification Environment on Rhapsody models, the
user has to take care of restrictions described in this paper. The document is struc-
tured as follows: The first section contains general assumptions about UML-models
to be supported and of which some are already implied by the more specialized re-
strictions. The sections 2 to 7 describe restrictions on the following levels: Design,
Specification, Errorpath, UML, Rhapsody and C++. Section 8 contains a list of
potentially problematic constructs and finally section 9 is a list of possible C++
translation errors (if an error is the result of an unmet restriction, then there is a
reference to the proper location in the document).

The restrictions mentioned in this paper are also valid for the XMI Verification
Environment. You will find additional, XMI-specific restrictions in [3].

1. Assumptions

(1) UML-models are of the “task type”, i.e.
(a) a task comprises a single active object and a set of passive objects;

every object belongs to exactly one task and during lifetime it does
not change the task it belongs to

(b) the active object of a task has an own thread-of-control, a queue and
does event handling for its reactive objects (objects which have a stat-
echart); it can call methods of itself and its passive objects and may
have a statechart of its own

(c) inter-task communication is restricted to event communication

(2) UML-models are bounded over the lifetime, in particular the lifetime of the
model can be separated into three phases:
(a) Finitely many non-event objects are created in the initialisation phase

(statecharts of this objects must take the initial transition). In Rhap-
sody, this corresponds to the entries made in the “Initialization”-tab of
a “configuration”. For all of this objects, its components (strong aggre-
gates) and recursivly all sub-components are also created at this time
(the multiplicity of strong-aggregation relations must be bounded). No
other objects may be created at initialisation time.

(b) During runtime, (weak) aggregates of objects may be created or de-
structed. Together with the creation or destruction of an aggregate,
all its components and recursivly all sub-components are created resp.
destructed. The multiplicity of weak-aggregation relations must be
bounded.

(c) The destruction phase is possibly never reached, if the model does not
terminate (in this case the initially created objects don’t terminate).
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2. Design

(1) Annotation Language Only (a subset of) C++ is allowed as annotation
language (In the XMI Verification Environment it is also possible to use
the action language defined for the Omega kernel language).

(2) Expression Overflow Overflow must not occur within expressions (due to
limited, machine-dependent integer-representation), e.g.

return ((0xffffffff + 1) == 0) ? 1 : 0;

yields 1 if compiled for a 32bit machine but the corresponding expression
yields 0 in (the intermediate language) SMI

(3) Initial Transition Initial transitions within statecharts have neither guards
nor triggers

(4) Libraries External libraries (i.e. libraries not defined by the user) must
not be used, including the standard C library and the standard template
library, but excluding the Rhapsody Framework (see (6.3)). Import from
other Rhapsody projects is not supported.

(5) Queue Designs which need a queue length greater than a predefined n are
not supported.

(6) Recursion No recursion is allowed, in the sense that for every object o
and every method f (where different implementations in a class hierarchy
are considered different methods) in every call chain f is called for o at
most once. This excludes direct recursion, where a method calls itself, and
indirect recursion where another method g calls f for o where it has been
originally called from.

3. Specification

(1) Liveness Liveness properties are not supported.

(2) Methods Methods from the model cannot be used in the C++ expression
used as specification for drive-to-property or check-invariance, except for
state IN() methods of states, which are the basis of IS IN macro. In
addition, the abs()-function (which is part of the Verification Framework)
may be used to calculate the absolute value of an integer.

(3) Multiplicity Constraints Multiplicities on associations could be interpreted
as constraints, if one writes the right temporal logic formula and runs in-
variance check (no support to generate this formula yet).
Automatic “on the fly” checking that all associations keep their multiplicity
constraint is not supported.

(4) Object Naming Object naming is restricted to fully qualified names starting
with root. Navigation expression over associations or weak aggregations
which link ends are not initialized in the first step are not supported. Free
variables are not supported.

(5) Specification Language The specification is an instance of a synchronous
pattern (including drive-to-state, drive-to-property, check-invariance) or a
CTL formula.

(6) Time Neither time annotations in an LSC nor worst-case-timing analysis
based on annotations in the model are supported.
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4. Errorpath

(1) Simulations There’s no translation from the model-checker’s counter-exam-
ples to a Rhapsody simulation of the error.

5. UML

(1) Actors Actors are not supported.

(2) Deferred Events The concept of deferred events is not supported.

(3) Delays OXFDelay is not supported.

(4) Inheritance Multiple Inheritance is not supported yet.

(5) Multiplicity Associations, aggregations and compositions with unfixed mul-
tiplicities are not supported.

(6) Multiplicity If a class D is inherited from a class C, then D must not be a
strong aggregate or a component of C.

(7) Statecharts doActions within a state are not supported.

(8) State names Statenames must be unique for a class, that is states in dif-
ferent orthogonal regions or within different submachine states or across
composite states must be named unique within the whole ’root’ statema-
chine of a class.

(9) Time Events Time events are not supported, i.e. a model must not contain
a tm() transition.

(10) Scopes Hierarchical scopes are not supported, in particular:
(a) nested packages
(b) nested classes
(c) class-declarations in operations

(11) Stereotypes Stereotyped relations are ignored.

6. Rhapsody

(1) Components Exactly one component declaration and exactly one config-
uration for the whole model is taken into account for the verification(cf.
[2]).

(2) Framework Implementation Exploiting knowledge about the framework
implementation, e.g. accessing attributes of OMReactive directly, is not
supported (cf. (6.3))

(3) Framework Interface The supported interface of the Rhapsody framework
OXF comprises: GEN, REPLY (but cf. 6.7), IS IN

(4) Instances No usage of explicit instantiations of classes is allowed

(5) Projectname The name of the project must not be the name of a class.

(6) Run-To-Completion Steps The behavior of Rhapsody for infinite Run-To-
Completion Steps is not supported.

(7) Triggered Operations Calling a triggered operation is supported in transi-
tion actions, not in primitive operations.

(8) Version Only Rhapsody Version 4.2 is supported
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7. C++

(1) asm-Statements Asm statements are not supported.

(2) Call by reference Call by reference is not supported.

(3) Casts Explicit casts in the user code are not supported. Note that special
forms of casts are possible when using the workaround for enumeration-
types mentioned in [1].

(4) Comma Operators The comma expression operation is not supported.

(5) Constants Constants of the simple types mentioned in 7.25 are supported,
but no constant attributes, and const-declaration of methods.

(6) Conversions Conversion operator functions for classes are not supported.

(7) Ellipsis Functions with ellipsis are not supported.

(8) Exceptions Exceptions are not supported, i.e. no throw, no try, no catch.

(9) Expression Statements Expressions as statements are only allowed, if the
topmost expression node is an assignment or a functioncall.

(10) Goto Goto and label statements are not supported (Nevertheless, forward
jumps should work, but are not well tested).

(11) Loops Loops in general are not supported (no while, do-while and for).
Nevertheless, a special form of a for-loop may be used, see [1].

(12) Modulo Operators The modulo expression operation is supported, but a
modulo assign operator is not supported.

(13) Namespaces Different name spaces for structs and other types not sup-
ported, e.g. in C++.

int A = 0; struct A ... ;

is possible; the A’s are different and to separate them, a use of the latter A
has to be prefixed by struct.

(14) Namespaces The using-statement is not supported.

(15) Overloading Flat operators like operator+ for structs are not supported.

(16) Plain Operators Plain (i.e. not member function) operators are restricted to
integral types. Bitwise operators (|, &, ^, ~, |=, ^=, &=) and shift operators
(<<, >>, <<=, >>=) are not supported.

(17) Pointers The operator * as (pointer-)type constructor (except for pointer
types to classes) or as dereferencing operator is not supported. The op-
erator & is not supported as address-of operator. In particular function-
pointers, call-by-reference (except for objects) and pointer-to-member are
not supported.

(18) Pointer Arithmetics Pointer arithmetics (like adding 1 to a pointer) are not
supported. Pointers can only be assigned and compared for (in)equality.

(19) References The operator & to construct reference types is not supported.

(20) sizeof() Operator The sizeof() operator is not supported.

(21) C Static Static local and global variables are not supported.

(22) C++ Static Static attributes or methods are not supported.
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(23) Switch The fall through C++-semantic of switch-statements is not sup-
ported (That is: We only support switch statements, if the last statement
of a switch-case is a break)

(24) Templates The declaration and/or usage of template classes is not sup-
ported.

(25) Types In general: Only the simple integer kind is allowed (i.e. no explicit
short/long or signed/unsigned integers, no char, no bool), no floats, no
typedefs, no enums, no structs, no unions, no arrays (cf. [2]). The range of
the integer type is determined by the values of the configuration properties

CPP CG.Verification.IntegerLowerBound

and
CPP CG.Verification.IntegerUpperBound

The previous restriction is only excepted by the two workarounds for special
array- and enumeration-types described in [1].

(26) Type Definitions Type definitions within function bodies are not sup-
ported.

(27) Variables Attributes or local variables of class type are not supported, i.e.
only pointers (“identities”) of them are supported.

(28) Virtual Base Classes Virtual base classes are not supported.

8. Modeling Guidelines

(1) avoid side-effects in guards, i.e. don’t call functions which modify attributes
and don’t use assignment-expressions or increment-operators
(this is actually required by the UML 1.4: “Guards should not include
expressions causing side effects. Models that violate this are considered ill
formed.” (p. 2-165))

(2) event parameters can only be used at the action of the first transition in the
run-to-completion step triggered by the event (other access is only possible
by a “dirty hack” and this is not supported (see above))

(3) don’t modify attributes that occur in conditions inside the statechart by
primitive operations (since otherwise you might observe the situation that
the object is in stable state although there is a transition which seems
to be enabled (since the condition now holds due to modifications by the
primitive operation) and that it remains in stable state until the next event
is dispatched (this is UML semantics: the enabled-ness of a transition is
checked only if there is a current event, i.e. during event dispatching))

9. C++ Translation Errors

Many restrictions mentioned in the previous sections are checked when the C++
code is translated by the tool edg2ssl. This section contains a list of all possible
errors and its errorcode in the backend-part of edg2ssl (on the other hand the front-
end part checks the syntactical correctness of the C++ code like a conventional
compiler). Some of the errors below are not the result of a restriction (and therefore
off topic in the context of this document).

(1) Dynamic initializations are not supported yet (discretionary error)

(2) Using declarations are not supported yet (discretionary error) [page 4
(7.14)]
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(3) Local static variable initializations are not supported yet (discretionary
error)

(6) Not enough memory (catastrophe)

(8) An elaborated type specifier is needed (not supported yet) (error) [page 4
(7.13)]

(9) There exists an unknown kind of a hidden name (error)

(11) A variable or field has an unsupported type (e.g. a class type) (error) [page
5 (7.27)]

(12) A Switch-clause does not end with a break (discretionary error) [page 5
(7.23)]

(13) Type declarations within functions are not supported yet (error) [page 5
(7.26)]

(14) Something unexpected happened (internal error)

(15) Qualification needed (error)

(16) Unsupported address base kind (discretionary error)

(17) Unsupported constant representation kind (discretionary error)

(18) Unsupported dynamic init kind (discretionary error)

(19) Unsupported constructor init kind (discretionary error)

(21) Unsupported special function kind (discretionary error)

(23) Unsupported initialization kind (discretionary error)

(24) Unsupported type kind (discretionary error)

(25) Unsupported statement kind (discretionary error)

(27) Unsupported expression operation kind (discretionary error)

(28) Unsupported expression node kind (discretionary error)

(29) A constant pointer to a routine (discretionary error) [page 4 (7.17)]

(30) A constant pointer to a variable (discretionary error) [page 4 (7.17)]

(31) A constant pointer to a GUID structure for Microsoft uuidof operation
(discretionary error) [page 4 (7.17)]

(32) A constant pointer to a label (used for the GNU address-of-label extension)
(discretionary error) [page 4 (7.17)]

(33) A constant of kind pointer-to-member (data or function) (discretionary
error) [page 4 (7.17)]

(34) A constant of kind dynamic init (discretionary error)

(35) A List of constants in initialization (discretionary error)

(36) A repeated initialization constant in an array (discretionary error)

(37) A nontype parameter in a class template declaration (discretionary error)
[page 5 (7.24)]

(38) The change of the current object in an aggregate initializer (C99) (discre-
tionary error)

(39) Initialization to zero (defined to be the same as default initialization of a
static object) (discretionary error)
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(40) Initial value of a simple object is established by a call of a routine that
returns a class object via a copy constructor (discretionary error)

(41) Initial value of a nonconstant aggregate object (array or class) is represented
by a list of constant entries (some of which will refer to nonconstants)
(discretionary error)

(42) Initial value is established by a bitwise copy (discretionary error)

(43) Object to be initialized is a virtual base class (discretionary error) [page 5
(7.28)]

(44) A conversion operator function (discretionary error) [page 4 (7.6)]

(45) Initialization to zero (static or dynamic) (discretionary error)

(46) Either dynamic or aggregate-constant initialization of a local static variable.
The variable itself does not point at the initializer; rather the initialization
is represented by a local static variable init entry (discretionary error)

(47) Routine type (discretionary error) [page 5 (7.25)]

(49) Struct type (discretionary error) [page 5 (7.25)]

(50) Union type (discretionary error) [page 5 (7.25)]

(51) Pointer to member types (discretionary error) [page 5 (7.25)]

(52) Type parameter in a (class or function) template declaration (discretionary
error) [page 5 (7.24)]

(53) Goto-statement (discretionary error) [page 4 (7.10)]

(54) Label-statement (discretionary error) [page 4 (7.10)]

(55) Asm-statement (discretionary error) [page 4 (7.1)]

(56) Try-block-statement (discretionary error) [page 4 (7.8)]

(57) Statement to set the size of a variable length array type (discretionary
error)

(58) Declaration of a variable or typedef with variably modified type (discre-
tionary error)

(59) A statement, which marks where a variable with a variable length array
type should be deallocated (discretionary error)

(60) Cast of a pointer to a class to a pointer to a direct derived class (discre-
tionary error) [page 4 (7.3)], [page 4 (7.3)]

(61) Cast of a pointer to a member of a class to a pointer to a member of a
direct base class (discretionary error) [page 4 (7.3)]

(62) Cast of a pointer to a member of a class to a pointer to a member of a
direct derived class (discretionary error) [page 4 (7.3)]

(63) Cast of an lvalue in pcc mode (discretionary error) [page 4 (7.3)]

(64) Dynamic Cast (discretionary error) [page 4 (7.3)]

(65) Static Cast (discretionary error) [page 4 (7.3)]

(66) Generic const cast (discretionary error) [page 4 (7.3)]

(67) Generic reinterpret cast (discretionary error) [page 4 (7.3)]

(69) Floating negation (discretionary error) [page 5 (7.25)]

(71) Integer bitwise complement (”˜” operator) (discretionary error) [page 4
(7.16)]
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(74) Floating pre increment (discretionary error) [page 5 (7.25)]

(75) Floating pre decrement (discretionary error) [page 5 (7.25)]

(76) Pointer pre increment (discretionary error) [page 4 (7.18)]

(77) Pointer pre decrement (discretionary error) [page 4 (7.18)]

(78) An expression placed above an expression that is a struct rvalue, produces
the address of the struct. This is used in implementing subscripting of
rvalue arrays in C mode (an extension to ANSI/ISO C) (discretionary er-
ror) [page 5 (7.25)]

(79) ”%” operator (no error)

(81) Pointer difference (discretionary error) [page 4 (7.18)]

(82) Pointer to member equality (discretionary error) [page 4 (7.17)]

(83) Pointer to member inequality (discretionary error) [page 4 (7.17)]

(84) Structure assignment (discretionary error) [page 5 (7.25)]

(86) Pointer to member assignment (discretionary error) [page 4 (7.17)]

(91) Remainder assign operator (discretionary error) [page 4 (7.12)]

(92) Floating add assign operator (discretionary error) [page 5 (7.25)]

(93) Floating subtract assign operator (discretionary error) [page 5 (7.25)]

(94) Floating multiply assign operator (discretionary error) [page 5 (7.25)]

(95) Floating divide assign operator (discretionary error) [page 5 (7.25)]

(96) Pointer add assign operator (discretionary error) [page 4 (7.18)]

(97) Pointer subtract assign operator (discretionary error) [page 4 (7.18)]

(98) Left shift assign operator (discretionary error) [page 4 (7.16)]

(99) Right shift assign operator (discretionary error) [page 4 (7.16)]

(100) Bitwise and assign operator (discretionary error) [page 4 (7.16)]

(101) Bitwise or assign operator (discretionary error) [page 4 (7.16)]

(102) Exclusive or assign operator (discretionary error) [page 4 (7.16)]

(104) Member of a struct or union, where the first operand is a struct/union value,
the second (given by an enk field node) is the member (field) (discretionary
error) [page 5 (7.25)]

(105) First operand is an address of a struct/union, second a bit field (discre-
tionary error) [page 5 (7.25)]

(106) First operand is a struct/union value, second a bit field (discretionary error)
[page 5 (7.25)]

(107) Extraction of a value of a bit field (discretionary error) [page 5 (7.25)]

(108) Selection of a field identified by a pointer to a (data) member (discretionary
error) [page 4 (7.17)]

(109) Static member selection of kind p→m (discretionary error) [page 4 (7.22)]

(110) Static member selection of kind lvalue.m (discretionary error) [page 4
(7.22)]

(111) Static member selection of kind rvalue.m (discretionary error) [page 4
(7.22)]
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(112) Left shift (”<<” operator) (discretionary error) [page 4 (7.16)]

(113) Right shift (”>>” operator) (discretionary error) [page 4 (7.16)]

(114) Bitwise and (”&” operator) (discretionary error) [page 4 (7.16)]

(115) Bitwise or (”|” operator) (discretionary error) [page 4 (7.16)]

(116) Exclusive or (”ˆ” operator) (discretionary error) [page 4 (7.16)]

(117) Comma operator (discretionary error) [page 4 (7.4)]

(118) A normal function pointer for a C++ virtual member function (discre-
tionary error) [page 4 (7.17)]

(119) Call of a ”destructor” for a class or simple type that does not have one
(operand is an lvalue) (discretionary error)

(120) Call of a ”destructor” for a class or simple type that does not have one
(operand is an rvalue) (discretionary error)

(123) A call of a function identified by a pointer to a member (discretionary
error) [page 4 (7.17)]

(124) va start macro reference (discretionary error) [page 4 (7.7)]

(125) va arg macro reference (discretionary error) [page 4 (7.7)]

(126) va end macro reference (discretionary error) [page 4 (7.7)]

(127) <stdarg.h> variant of va copy macro reference (discretionary error) [page
4 (7.7)]

(128) <varargs.h> variant of va start macro reference (discretionary error) [page
4 (7.7)]

(129) Generic negation (discretionary error) [page 5 (7.24)]

(130) Generic post increment (discretionary error) [page 5 (7.24)]

(131) Generic post decrement (discretionary error) [page 5 (7.24)]

(132) Generic pre increment (discretionary error) [page 5 (7.24)]

(133) Generic pre decrement (discretionary error) [page 5 (7.24)]

(134) Generic addition (discretionary error) [page 5 (7.24)]

(135) Generic subtraction (discretionary error) [page 5 (7.24)]

(136) Generic multiplication (discretionary error) [page 5 (7.24)]

(137) Generic division (discretionary error) [page 5 (7.24)]

(138) Generic equality (discretionary error) [page 5 (7.24)]

(139) Generic inequality (discretionary error) [page 5 (7.24)]

(140) Generic greater than (discretionary error) [page 5 (7.24)]

(141) Generic less than (discretionary error) [page 5 (7.24)]

(142) Generic greater than or equal (discretionary error) [page 5 (7.24)]

(143) Generic less than or equal (discretionary error) [page 5 (7.24)]

(144) Generic assignment (discretionary error) [page 5 (7.24)]

(145) Generic add assign operator (discretionary error) [page 5 (7.24)]

(146) Generic subtract assign operator (discretionary error) [page 5 (7.24)]

(147) Generic multiply assign operator (discretionary error) [page 5 (7.24)]
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(148) Generic divide assign operator (discretionary error) [page 5 (7.24)]

(149) Generic unary ”&” (discretionary error) [page 5 (7.24)]

(150) Generic ”.*” field selection (discretionary error) [page 5 (7.24)]

(151) Generic ”→ �” field selection (discretionary error) [page 5 (7.24)]

(152) lvalue (discretionary error) [page 5 (7.24)]

(153) rvalue (discretionary error) [page 5 (7.24)]

(154) Called function details are not known (discretionary error) [page 5 (7.24)]

(155) Initialization of a temporary within an expression (discretionary error)

(156) throw expression (discretionary error) [page 4 (7.8)]

(157) a variable declaration with an initializer that appears as the condition of
an if-, switch-, while- or for-statement (discretionary error)

(158) Introduction of an object lifetime (discretionary error)

(159) typeid expression (discretionary error)

(160) A sizeof expression that cannot be evaluated until runtime (discretionary
error) [page 4 (7.20)]

(161) Nonstandard construct ”&...” (address of ellipsis) (discretionary error)
[page 4 (7.7)]

(162) The address of a routine (discretionary error) [page 4 (7.17)]

(163) Templates are not supported yet (discretionary error) [page 5 (7.24)]

(164) Ellipsis are not supported yet (discretionary error) [page 4 (7.7)]

(165) Float constant (discretionary error) [page 5 (7.25)]

(166) Float type (discretionary error) [page 5 (7.25)]

(167) Float post increment expression operation (discretionary error) [page 5
(7.25)]

(168) Float post decrement expression operation (discretionary error) [page 5
(7.25)]

(169) Float addition expression operation (discretionary error) [page 5 (7.25)]

(170) Float subtraction expression operation (discretionary error) [page 5 (7.25)]

(171) Float multiply expression operation (discretionary error) [page 5 (7.25)]

(172) Float divide expression operation (discretionary error) [page 5 (7.25)]

(173) Float ”==” expression operation (discretionary error) [page 5 (7.25)]

(174) Float ”!=” expression operation (discretionary error) [page 5 (7.25)]

(175) Float ”>” expression operation (discretionary error) [page 5 (7.25)]

(176) Float ”<” expression operation (discretionary error) [page 5 (7.25)]

(177) Float ”>=” expression operation (discretionary error) [page 5 (7.25)]

(178) Float ”<=” expression operation (discretionary error) [page 5 (7.25)]

(179) Float assignment expression operation (discretionary error) [page 5 (7.25)]

(180) Pointer post increment expression operation (discretionary error) [page 4
(7.18)]

(181) Pointer post decrement expression operation (discretionary error) [page 4
(7.18)]
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(182) Pointer addition expression operation (discretionary error) [page 4 (7.18)]

(183) Pointer subtraction expression operation (discretionary error) [page 4 (7.18)]

(184) Pointer ”>” expression operation (discretionary error) [page 4 (7.18)]

(185) Pointer ”<” expression operation (discretionary error) [page 4 (7.18)]

(186) Pointer ”>=” expression operation (discretionary error) [page 4 (7.18)]

(187) Pointer ”<=” expression operation (discretionary error) [page 4 (7.18)]

(189) Static local variable (discretionary error) [page 4 (7.22)]

(190) Static member routine (discretionary error) [page 4 (7.22)]

(191) Static variable (C-style) (discretionary error) [page 4 (7.21)]

(192) Static routine (C-style) (discretionary error) [page 4 (7.21)]

(193) Statement unrecognized (discretionary error) [page 4 (7.9)]

(194) Maximal nesting of the operator � to construct pointer types is 2 (discre-
tionary error) [page 4 (7.17)]

(195) This kind of an array is unsupported (error) [page 5 (7.25)]
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Rhapsody Verification Environment

How to go round some restrictions
$Revision: 1.1 $, $Date: 2004/02/12 13:46:27 $

1 Introduction

This document gives hints how to use some UML-/C++-features, which are in
general still restricted in the Rhapsody Verification Environment, but are usable
in special cases. By using these features you are entering the gray zone, that is
you are forced to use special workarounds which may be not exactly what you
want or what you already used in your model and which are (at the moment)
only semi-supported by us. In many cases this document could neverless be
helpful to the user of the Rhapsody Verification Environment.

2 Arrays

Arrays in general are not supported, but for RUVE (yet not for XUVE) it is
possible to define one dimensional int-arrays in the following way:

1. Add a new type (e.g. named Array of 5 int) to the package of your
Rhapsody model.

2. In the Features → C++ Declaration-field of the type enter a declaration in
the following form (the following declaration corresponds to the example
array Array of 5 int mentioned above):

typedef int %s[5];

3. Now you can create class attributes and give them the array-type in the
following way: Under Features → Attribute type you have to select Use
existing type and choose your named array-type (e.g. Array of 5 int)
from the Type-dropdownlist.

4. You have to deselect the following properties of all attributes which are of
an array type:

CPP CG.Attribute.AccessorGenerate
CPP CG.Attribute.MutatorGenerate

Instead, you may of course explicitly define own accessor- or mutator-
functions in the class of the attribute.
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At the moment we only support such array types for attributes, but local vari-
ables of an arraytype are not supported yet. Note that we also do not support
pointer to arrays, especially it is not directly possible to use arrays as parame-
ters for primitive operations, events or triggered operations. Alternatively you
may define an own class with an array attribute and use the pointer to this
class.

3 Enumerations

Enumeration types are only supported in the C++ sense:

• enumeration values correspond to integer values, that is they may be used
in arithmetical expressions

• two different named enumeration values (e.g. ev a and ev b) may have
the same integer value, that is the expression ev a == ev b may result to
true.

• each enumeration type defines an integer range, which can be represented
by the smallest bitfield that is necessary to contain all named enumeration
values (example: the type enum example et {ev a= −1, ev b= 2} de-
fines an integer range from −4(= −22) to 3(= 22−1)). Thus it is possible
that an enumeration variable may store an integer value without the exis-
tance of a corresponding enumeration name. The result of an enumeration
variable after a range overflow is not defined.

• integer values may be converted to enumeration values (example: x =
example et(-3)).

You may use enumerations in RUVE (yet not in XUVE), if the use is not in con-
flict with this C++ sense. Enumeration types have to be defined by a typedef
and have to be used by refering to the name defined by the typedef (analogue
to arrays, see previous section). We do not support overloading of functions
by using same named functions, were the signatures have the same number of
parameters and only differ in the parameter types (for example: we do not sup-
port the declaration of two functions f(int) and f(example et) in the same
scope).

It is not necessary that the range of each enumeration fits into the int-range
defined by the properties

CPP CG.Verification.IntegerLowerBound
CPP CG.Verification.IntegerUpperBound

This could be very helpful, if you need for special variables a greater range than
the range defined by these properties (for example, if you want to calculate the
average of three int values by calculating the sum of the three values into a
special res variable and afterwards dividing res by 3 - in this case you need a
greater range for res to prevent an overflow).
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On the other hand, enumerations could be used to minimize the state space
(and thus the verification time) of the model by using for each variable an enu-
meration type with the smallest possible int-range.

We do not yet support the bool type, but you may define a two-valued
enumeration type with corresponding int-values 0 and 1. You may, after a con-
version operation to the enumeration type, assign ’simple’ boolean expressions
to such a variable1 and compare them with other simple boolean expressions
(by using the expression operations ’==’ or ’!=’).

4 Loops

Loops in general are not supported, but we support a special form of the for-
loop, which could be very helpful if you want to navigate through a relation
with a multiplicity greater than 1:

for (int <var> = <civ1>; <var> < <civ2>; <var>++) ...

Strictly speeking, the following conditions must be met:

• The counter variable <var> must be of type int

• The declaration of <var> must be within the for-loop initialization

• <var> must be initialised directly within the declaration by assigning a
constant int-value <civ1>

• nothing else may be done in the initialisation field

• the for-loop condition expression must be an int-’lower than’ expression
operation; the left operand must be the counter variable and the right
operand must be a constant integer value

• the for-loop increment expression must be the int-post increment oper-
ator applied on the counter variable

• the counter variable may not be changed within the for-loop statement

For example, the following for-loop sends an event E to all 4 parts of a compo-
sition itsC:

for (int i=0; i<4; i++) { itsC[i]->GEN(E); }

1let true, false and variables of a {0, 1}-valued enumeration type be a ’simple’ boolean
expressions. The result of the operations ’&&’, ’||’ or ’!’ on ’simple’ boolean expressions is also
a ’simple’ boolean expression
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The XMI UML Verification Environment

User Documentation
$Revision: 1.10 $, $Date: 2004/05/07 14:37:30 $

This documentation describes the usage of the tools contained in the XMI
UML Verification Environment. Please see The Rhapsody UML Verification
Environment (Installation-Guide and Tutorial) [7] for a detailed description of
the system requirements and the installation procedure.

It is possible to start XUVE directly from Rhapsody, see section 5. You will
find a description of the nondetermism-support in section 6.

1 verify xmi.sh

The tool verify xmi.sh allows to verify specifications for a XMI UML model.
Before using it, you must be familiar with the different kinds and the syntactical
form of specifications for the XMI UML Verification Environment. It supports
the same specification descriptions as the Rhapsody UML Verification Environ-
ment, please read [7] for a detailed description. In addition you have to ensure
that no restriction of the XMI UML Verification Environment is violated, please
read the corresponding document [8]. The usage of verify xmi.sh is:

Usage: verify_xmi.sh [OPTIONS] XMIFILE [PROPERTY...]

By typing1 verify xmi.sh --help you will get a list of possible options. The
most common options are --fixstate and --omal. By giving the option
--fixstate, the verify xmi.sh script interprets all instances of State in the
XMI to be in fact instances of SimpleState2. By giving the option --omal,
the user determines that the action language within the XMI file is the Omega
action language defined in [1]. Without this option, the tool assumes the Rhap-
sody action language, which is a subset of C++3.

With the PROPERTY file you determine the specification which has to be
checked by the XMI Verification Environment. If no PROPERTY file is given, a

1The CygWin-Bash will find the XMI-tools, if you add $UMLVERIFROOT/bin to the PATH

Environment-variable or if you prefix each call with $UMLVERIFROOT/bin/
2Normally, there may not exists any State instance in the XMI, because State is an

abstract UML meta-class. Nevertheless, instances of States instead of SimpleStates are
used in XMI-files generated by the Rhapsody XMI-Toolkit.

3In fact, the language is only syntactically a subset of C++. Semantically the lan-
guage is extended by interpreting special preprocessor-pragmas as nondeterministic choise-
or interleaving-constructs, see the grammar in section 4
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default file properties.spec is copied to the current directory and opened with
your favorite editor, which has to be set in the $EDITOR environment variable.
If $EDITOR is not set, WordPad (or vi, if WordPad cannot be found) is used as
the default editor.

The syntax of the property file should be self-explanatory, if you know how
to set the corresponding properties in the Rhapsody UML Verification Environ-
ment (see [7] - make sure that your editor does not introduce new linebreaks
and follow the rules for multi-line properties). The value of Configuration in
the first line is used to create a new directory with this name, where all files for
the verification task are written.

As an example, we describe in the following how to verify the invariance
check property for the Vending Machine4, mentioned in section 3.6 of [7]:

• Enter the directory $UMLVERIFROOT/examples/TheVendingMachine/

• This directory contains an XMI file of the model, named TheVendingMachine.xmi.
To start the verification you have to call

$UMLVERIFROOT/bin/verify_xmi.sh TheVendingMachine.xmi

• If you do not already have a properties.spec file in the current directory,
the following message will be given:

No ./properties.spec, trying to find one...

Copied default properties.spec -- please edit [RETURN to continue].

After pressing the RETURN-button, you can edit the properties.spec file.

• Set the name VerifyCI for the configuration by editing the line beginning
with Configuration:

Configuration : String = "VerifyCI"

• Make sure that the ExternalEventModus is set to ndet:

ExternalEventModus : "det,ndet" = "ndet"

• Specify the events, which are can be send nondeterminstically by the en-
vironment:

ExternalEventTrace : MultiLine = "root->p_VendingMachine->itsCoinValidator, C50; \
root->p_VendingMachine->itsCoinValidator, E1; \
root->p_VendingMachine->itsChoicePanel, WATER; \
root->p_VendingMachine->itsChoicePanel, SOFT; \
root->p_VendingMachine->itsChoicePanel, TEA;"

4The examples-directory contains Rhapsody models and corresponding XMI-files for the
Vending Machine- and the MiniExampleExt-model, both in two versions: The first version
uses a C++ subset as action language, the second the Omega action language.
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This property is of type MultiLine, so you may use linebreaks - but you
have to take care that each line (except the last line) is finished by a
backslash.

• Set the kind of specification to InvarianceCheck (this has to be a single
line without linebreaks):

Spec : "DriveToProperty,InvarianceCheck,PatternCheck,
TemporalLogic,LifeSequenceChart" = "InvarianceCheck"

• Set the Spec::InvarianceCheck property (this property also must not
contain linebreaks):

Spec::InvarianceCheck : String =
"!(root->p_VendingMachine->itsDrinkDispenser->IS_IN(Water_out) && \
root->p_VendingMachine->itsDrinkDispenser->IS_IN(Soft_out) && \
root->p_VendingMachine->itsDrinkDispenser->IS_IN(Tea_out))"

• Now you are ready, save and exit the editor. The verification process will
start and will (after a while) produce a resulting timing diagram and a
corresponding LSC (see [7] for a screenshot).

2 xmicheck

The tool xmicheck allows to check an XMI UML model against a number of
restrictions of the Omega Kernel Language (see section 3 of [6]). The usage of
xmicheck is:

Usage: xmicheck [OPTIONS] XMIFILE...

xmicheck --help shows the possible options. The following list informs
briefly (by listing the corresponding error message), which of the restrictions
are taken into account by xmicheck. Some of them are not checked, if option
--rhap xmi check is given (because some OMEGA-restrictions are always vi-
olated by Rhapsody XMI-files). If xmicheck should be applied on an XMI-file
which was generated by Rhapsody, the option --fixstate is helpful to fix a bug
in Rhapsody‘s XMI-exporter concerning the representation of SimpleStates.
xmicheck itself is restricted to XMI 1.0 (see [3]) and UML 1.3 (see [4], [5]) (future
versions will also support XMI 1.1 and/or UML 1.4). The checked restrictions
are:

1. Abstract class (error)

2. Abstract operation (error)

3. Stereotype (warning) [not check with option --rhap xmi check]

4. Flow-Relation (error)

5. Dependency-Relation (error)

6. Abstraction-Relation (error)
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7. Binding-Relation (error)

8. Permission-Relation (error)

9. Usage-Relation (error)

10. AssociationClass (error)

11. An AssociationEnd of a Composition has more than one MultiplicityRange
(error)

12. An AssociationEnd of a Composition has an interval-range of the form
[n..m] (error)

13. The root-AssociationEnd of a Composition has a multiplicity not equal to
1 (error)

14. An ’end-point’-AssociationEnd of a composition is not navigable (error)

15. An ’end-point’-AssociationEnd with Multiplicity n or a root-AssociationEnd
of a composition is not frozen (error) [not check with option --rhap xmi check]

16. An ’end-point’-AssociationEnd with Multiplicity * of a composition is not
add only (error)

17. An AssociationEnd of an Aggregation has more than one MultiplicityRange
(error)

18. An AssociationEnd of an Aggregation has an unbounded MultiplicityRange
with lower bound not equal to zero (error)

19. An ’end-point’-AssociationEnd of an aggregation is not navigable (error)

20. The root-AssociationEnd of an Aggregation has a multiplicity not equal
to 1 (error)

21. A root-AssociationEnd of an aggregation is not frozen (error) [not check
with option --rhap xmi check]

22. An AssociationEnd of an Association has more than one MultiplicityRange
(error)

23. An AssociationEnd of an Association has an unbounded MultiplicityRange
with lower bound not equal to zero (error)

24. Time event (warning)

25. Change event (error)

26. The CallConcurrencyKind of a triggered operation is neither guarded nor
sequential (error)

27. Choice State (error)

28. Fork State (error)

29. Join State (error)

4



30. Junction State (error)

31. State with Do-Activity (error)

32. Two aggregate classes are related to the same aggregate-parts (error)

33. There must be exactly one class with tag ’isRootClass’ valued ’True’ (er-
ror)

34. The root-class must be active (error) [not check with option --rhap xmi check]

3 omal2cpp

The tool omal2cpp allows to convert an XMIomal file into an XMIC++ file. That
is, the action language of method bodies, transition effects and the expression
language of transition guards is translated from the Omega action language (see
[1]) into the Rhapsody action language. The usage of omal2cpp is:

Usage: omal2cpp [OPTIONS] XMIINFILE XMIOUTFILE

At the moment omal2cpp is restricted to XMI 1.0 and UML 1.3 (future versions
will also support XMI 1.1 and/or UML 1.4).

Note that the tool still uses the old version of the OMAL-language defined
in [1]. Support for the revised grammar defined in [2] is not yet supported.

4 cpp2omal

This tool will take an XMIC++ file and produces an XMIomal file. As actions in
XMIC++ there are only C++ constructs allowed which correspond in a syntacti-
cal way to a language construct in the Omega action language. C++ comments
of multiline-form can be used, but will be ignore by the translation.

The following grammar rules determine the syntactical subset of C++ which
can be translated by cpp2omal. Most of the rule names are equal to the corre-
sponding names in [2]. The literal IDENTIFIER is defined by the regular expres-
sion [A-Za-z ][A-Za-z0-9 ]*.

4.1 The root cpp action

<cpp_action> ::= /* empty */ | <action> | <action_list> <action>

This rule allows to use action lists without enclosing block brackets.

4.2 action

<action> ::= [ IDENTIFIER ’:’ ] (
<elementary_action>

| <control_action>
| <composite_action>
| <nondet_choice_action>
| <interleaving_action> )
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4.3 elementary action

<elementary_action> ::= ’;’ /* empty action */
| <assignment_action> ’;’
| <call_action> ’;’
| <send_action> ’;’
| <return_action> ’;’
| <reply_action> ’;’

4.4 assignment action

<assignment_action> ::= <navigation_expression> ’=’ <expression>

4.5 call action

<call_action> ::= <call_expression>

4.6 send action

Generating signal events in C++ must be done by using a GEN macro or func-
tion (like in Rhapsody’s C++ framework), which will be translated into the
corresponding Omega Language representation.

<send_action> ::= <navigation_expression> ’->’ ’GEN’
’(’ IDENTIFIER ’(’
[ <simple_expression> ( ’,’ <simple_expression> )* ]
’)’ ’)’

4.7 return action

<return_action> ::= ’return’ <simple_expression>

4.8 reply action

The reply-macro is part of the Rhapsody-Framework and is used to return the
value of a triggered operation.

<reply_action> ::= ’reply’ ’(’ <simple_expression> ’)’

4.9 control action

<control_action> ::= ’if’ <expression> <action>
| ’if’ <expression> <action> ’else’ <action>
| ’while’ <expression> <action>

4.10 composite action

<composite_action> ::= ’{’ <action_list> ’}’
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4.11 nondet choice action

There exists no language construct in C++ for nondeterministic choice actions.
To enable the use of such a construct for the verification tools, we use special
C++ preprocessor-pragmas5.

<nondet_choice_action> ::=
’#pragma’ ’choose’ <action_list> ’#pragma’ ’endchoose’

Note that this pragma-section (and the pragma-section defined in the next sub-
section), may not be nested within the same scope. You may instead introduce
a ’pseudo’-scope by beginning a new C++-block before an inner-section and by
ending the C++-block after the inner-section. Example: Suppose you want to
nondeterminstically choose from four actions, where the third action consists
of two (sub-)actions. The order of the execution of these subactions should be
nondeterministic. Then, instead of writing

#pragma choose
<action1>
<action2>
#pragma cobegin
<action3.1>
<action3.2>
#pragma coend
<action4>
#pragma endchoose

you have to write:

#pragma choose
<action1>
<action2>
{
#pragma cobegin
<action3.1>
<action3.2>
#pragma coend
}
<action4>
#pragma endchoose

4.12 interleaving action

Analogue to the previous nondet choice action-rule, we use special C++
preprocessor-pragrams to express the interleaving action:

<interleaving_action> ::=
’#pragma’ ’cobegin’ <action_list> ’#pragma’ ’coend’

5Note the syntax-rules for C++ preprocessor-pragmas (in particular, there must be a
linebreak before and after the action list).
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4.13 control action

<control_action> ::= ’if’ ’(’ <expression> ’)’ <action>
| ’if’ ’(’ <expression> ’)’ <action> ’else’ <action>
| ’while’ ’(’ <expression> ’)’ <action>

4.14 group action

<group_action> ::= ’{’ <action_list> ’}’

4.15 action list

<action_list> ::= <action> | <action_list> <action>

4.16 expression

<expression> ::= <call_expression>
| <create_expression>
| <simple_expression>

4.17 call expression

<call_expression> ::= <navigation_expression> ’->’
[ IDENTIFIER ’::’ ]
IDENTIFIER ’(’
[ <simple_expression> ( ’,’ <simple_expression> )* ]
’)’

4.18 create expression

<create_expression> ::=
’new’ IDENTIFIER [ ’::’ IDENTIFIER ] ’(’
[ <simple_expression> ( ’,’ <simple_expression> )* ]
’)’

4.19 simple expression

<simple_expression> ::=
[ <simple_expression> ’||’ ] <and_expression>

4.20 and expression

<and_expression> ::=
[ <and_expression> ’&&’ ] <relational_expression>

4.21 relational expression

<relational_expression> ::= [ <relational_expression>
( ’<’ | ’<=’ | ’==’ | ’>=’ | ’>’ | ’!=’ ) ] <add_expression>
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4.22 add expression

<add_expression> ::=
[ <add_expression> ( ’+’ | ’-’ ) ] <mult_expression>

4.23 mult expression

<mult_expression> ::=
[ <mult_expression> ( ’*’ | ’/’ ) ] <unary_expression>

4.24 unary expression

<unary_expression> ::= [ ( ’-’ | ’!’ ) ] <primary_expression>

4.25 primary expression

<primary_expression> ::=
<literal>
| <navigation_expression>
| ’(’ <simple_expression> ’)’

4.26 literal

This rule contains the literal INTEGER LIT, which is defined by the regular ex-
pression [0-9]+ and the literal REAL LIT, which is defined by the regular ex-
pression [0-9]+\.[0-9]+.
<literal> ::=
’false’ | ’true’ | ’NULL’ | INTEGER_LIT | REAL_LIT

4.27 navigation expression

This rule contains the special literal COLLOP IDENTIFIER, which is defined by
the regular expression

("isEmpty "|"notEmpty "|"size ")[A-Za-z ][A-Za-z0-9 ]*

The suffix of this regular expression determines the name of the collection. Note
that this part looks different to the OMAL representation - the reason is that
supported collections in Rhapsody models are C++ arrays, which does not have
any member functions. Instead, there have to be for each class C and each col-
lection c in C member functions6 size c, isEmpty c and notEmpty c which
realize the corresponding behavior.

C++ Array-accesses are translated to the OMAL-getAt-collection opera-
tion.

6It depends on the framework, if the member functions must be implicit or explicit in
the model: As an example, the XMI Verification Environment supplies these functions im-
plicit, but for the Rhapsody Verification Environment these member functions must be defined
explicit in the model, because they are not automatically generated by Rhapsody’s Codegen-
eration.
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The rule contains also a special ’params’ variable, which is supplied by the
Rhapsody Framework and allows to access parameters of the event-trigger or
operation-trigger. This variable is translated into the name of the Reception,
which is equal to the operation- resp. event-name.

<navigation_expression> ::=
( ’this’ | IDENTIFIER | ’params’ ’->’ IDENTIFIER )
( ’->’ IDENTIFIER )*
[ ’[’ <simple_expression> ’]’ ]

| [ ( ’this’ | IDENTIFIER | ’params’ ’->’ IDENTIFIER )
( ’->’ IDENTIFIER )* ] COLLOP_IDENTIFIER ’(’ ’)’

5 Starting XUVE from Rhapsody

If your UML-model is a Rhapsody-model, you can also start XUVE from the
Rhapsody-Environment. Make sure, that your model does not violate a restric-
tion mentioned in [8], if it would be exported to XMI by the Rhapsody XMI
Toolkit. To use this feature, you have to set the property

CPP CG.Verification.MetaInfoTool

to the value xmi4rhap (the default value is rhap2ssl).

6 Nondeterminism-Support

The XMI UML Verification Environment (XUVE) supports nondeterministic
semantic for the following StateMachine-constructs:

• Orthogonal regions of composite states: The execution order of orthogonal
regions in composite states is chosen nondeterministically.

• Nondeterministic transition choice: The transition, which will be taken
in a given state, is chosen nondeterministically from the set of triggered
transitions in this state.

There exist two properties of type Bool to switch on these features (please read
the ruve tutorial [7] for a description of how to set properties for a configuration):

CPP CG.Verification.NondetAndStates
CPP CG.Verification.NondetTransitions

In addition, we support two kinds of nondeterminisms within the action lan-
guage: nondeterministic choice of an action from a given action-list by using
the choose-pragma (see section 4 for the syntax), and nondeterministic inter-
leaving of a given list of actions by using the cobegin- resp. coend-pragma.
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The XMI UML Verification Environment

Features and Restrictions
$Revision: 1.7 $, $Date: 2004/05/07 14:45:20 $

1 Introduction

The XMI UML Verification Environment (xuve) enables the formal verification
of UML models given as XMI-files. Although xuve uses the same back-end tools
and is part of the Rhapsody UML Verification Environment (ruve), xuve is in-
dependent of a Rhapsody installation and can be run at its own.

UML (and thus also its XMI representation) allows to describe the same
thing in different ways. A problem for XMI as an exchange format is that UML
tools often diverge on its chosen way of description. Other problems for the
exchange could arise when UML tools require resp. deliver XMI-files based on
different XMI- or UML-versions.

This document determines the properties of the XMI required by xuve:

• The XMI and UML version is determined in Section 2

• Section 3 contains a list of supported UML meta-class instances and its
required representation in XMI.

• Finally section 4 determines the action language supported in the XMI

Note that all restrictions of ruve, documented in [4] and [5], are also valid for
xuve.

2 XMI Version

At the moment xuve requires XMI-files based on XMI 1.0 (see [8]) and UML 1.3
(see [7] and [6]), which are still the versions exported for example by Rhapsody
and ArgoUML. Extensions to support also XMI 1.1 and UML 1.4 will be done
in future versions of xuve.

3 UML Meta-Classes

All non-abstract UML meta-classes can be instanciated in an XMI-file. For
the verification of a given UML-model, xuve takes only a subset of them into
account, because:
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• Some meta-class instances are not relevant for the behavioral description
of the model (for example, some tools use meta-classes of the package
Extension Mechanisms to store graphical informations of the model)

• UML allows to describe the same thing in different ways and UML-tools
tend to diverge at some aspects (for example the representation of tran-
sition effects or operation-bodies are often done in different ways). In the
initial version of xuve we support XMI-representations which are simi-
lar to Rhapsody’s XMI (see the corresponding subsections below for the
details)

• xuve is restricted to UML-models which are conform to the Omega kernel
language (see [1])

• The restrictions of the Rhapsody UML Verification Environment are also
valid for xuve (see [4]). The default behavior of xuve is to use the same
semantical interpretation of statecharts as Rhapsody.Alternatively, xuve
supports nondeterminism for two aspects of the StateMachine semantic:

– If more than one outgoing transition of a state is triggered, then the
choice which transition will be taken is nondeterministic.

– The execution order of orthogonal regions of composite states is non-
deterministic

• There are some additional restrictions for the current version of xuve,
because the corresponding features are not yet implemented

The subsections below describe in technical detail, which instances of the
UML meta-classes can be translated from XMI to the internal model-checker
format SSL/SMI (instances not mentioned here may exist in the XMI-file, but
they will not be translated properly):

3.1 Model

There must be exactly one, named instance of Model, as child of XMI.content.

3.2 Package

There must be exactly two instances of Package, as ownedElement of the Model.
One Package named PredefinedTypes has to contain all basic datatypes (like
int, bool, char), which are used in the model (They are instances of the UML
meta-class Datatype). The other package, named by the user, contains the rest
of the model. This package may optionally have a tag

CPP CG.Package.SpecIncludes

set to a filename, which may contain the declaration of preprocessor-macros (in
C++ syntax) to be used as integer constants in the action language.
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3.3 Class

Named classes as ownedElement of the user-defined Package are supported (but
for example no classes nested in classes). Exactly one class must have a tag
CPP CG.Class.isRootClass set to True. The meta-attribute isActive may be
true or false.

3.4 Association

The user-defined package may contain (as ownedElement) Associations between
classes. The connection of each Association has to consist of exactly two
AssociationEnd-instances.

3.5 AssociationEnd

The field isNavigable of AssociationEnds may be true or false - the Associ-
ationEnd must be named, if isNavigable is true. The aggregation-kind may
be none, aggregate or composite.

3.6 Multiplicity

The multiplicity of an AssociationEnd must consist of exactly one Multi-
plicityRange, if isNavigable is true.

3.7 MultiplicityRange

The lower- and upper-bound of a MultiplicityRangemust be set to a number
n, n > 0.

3.8 Generalization

The user-defined package may contain (as ownedElement) Generalizations be-
tween classes (that is, the child and parent-field of the Generalization refer
to a Class and both classes refer by the generalization resp. specialization-
field back to the Generalization) or between signals (that is, the child and
parent-field refer to a Signal, where again both signals refer back to the
Generalization).

3.9 Attribute

A named Attribute can be a feature of a class. All kinds of visibility
(public, private, protected) and the ownerScope-value instance are sup-
ported. The type has to be a basic type defined in the PredefinedTypes
package.

Attributes may have a tag CPP CG.Attribute.MutatorGenerate set to False.
If this tag is missing, an implicit set-method is generated (named set<name of
the Attribute, first character upper case>) with exactly one parame-
ter equally typed as the attribute (the implicit generation of this method is
omitted, if a method with this name already exists in the class, because of an
explicit definition by the user). The set-method can be used in the model
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to set the value of the attribute. Analogously, Attributes may have a tag
CPP CG.Attribute.AccessorGenerate set to value False to suppress the im-
plicit generation of an accessor-function named get<name of the Attribute,
first character upper case>.

Attributes may have a tag CPP CG.Attribute.SmiModus. Possible values are
state, auxiliary and input. See [5] for a detailed description of this property.

3.10 Operation

A named Operation can be a feature of a class. All kinds of visibility, all
kinds of ownerScope and the concurrency-value sequential are supported. If
the operation is a triggered operation, a tag isTrigger must have the value
true. If the operation is virtual, a tag CPP CG.Operation.isVirtual must
have the value True.

3.11 Method

For each nontriggered operation there must be exactly one defining Method,
which has to be a feature of the corresponding class (triggered operations may
not have a defining method - instead their semantic is given by the StateMachine
of the class, which has the triggered operation as a feature). The definition of the
method is located in the body-meta attribute. Constructors and the destructor
of a class may be modeled as Operations resp. Methods. They have to be named
like the corresponding class (for constructors) or like the corresponding class
prefixed with ’~’ (for destructors). If the operation of the method is virtual, the
method must have a tag CPP CG.Operation.isVirtual set to the value True.

3.12 Parameter

Operations and the corresponding methods may have parameters of kind in and
must have at least one parameter of kind return. The type of a Parameter has
to be a basic type, defined in the PredefinedTypes package.

3.13 StateMachine

Each class may have at most one StateMachine as behavior. The top-state
of a StateMachine has to be a CompositeState. A StateVertex may be a
PseudoState, a CompositeState (isConcurrent may be true or false) or a
SimpleState. CompositeStates and SimpleStates must be named and may have
an UninterpretedAction (with corresponding code in its body-attribute) as
entry or exit.

3.14 PseudoState

A PseudoState may be of kind initial, deepHistory, join or fork. In ad-
dition, branch- and final- Pseudostates are only supported with Rhapsodys
semantic: branch-Pseudostates are statical conditional branches and the effect
of final-Pseudostates is the destruction of the instance after entering the state.
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3.15 Transition

Transitions may be incoming and outgoing of state vertices. Each transition
may have a at most one guard (the guard-expression has to be an instance
of BooleanExpression), a trigger (of meta-class SignalEvent or CallEvent)
and an effect (of meta-class UninterpretedAction), which contains the action
in the body meta-attribute).

3.16 SignalEvent

The SignalEvent must refer (with name signal) to a Signal instance.

3.17 Signal

The userdefined package may have as ownedElement instances of the meta-class
Signal. Each Signal may have instances of meta-class Attribute as feature.
The Signal of a SignalEvent must be named.

3.18 CallEvent

The operation of a CallEvent must be a triggered operation.

4 Action Language

The action language in method bodies, transition effects and the corresponding
expression language-subset used in transition guards may be either the Rhap-
sody action language, which is a subset of C++ with library functions corre-
sponding to the actions defined informally in [1], or the Omega Action Language
defined in [3] (not that the tool omal2cpp and the verification of XMI-files which
use the Omega-action language, is still based on the nonrevised grammar defined
in [2]).
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