Software Toolsfor Technology Transfer manuscript No.
(will be inserted by the editor)

A real-timeprofilefor UML*

Susanne Graf, |leana Ober and lulian Ober

VERIMAG** — Centre Equation — 2, avenue de Vignate
F-38610 Giéres — France

e-mail: {Susanne.Graf,Ileana.Ober,Iulian.Ober}@imag. fr

http://www-verimag.imag.fr/{graf,"iober,ober}

The date of receipt and acceptance will be inserted by the editor

Abstract. This paper describes an approach for real-time modelling
in UML, focusing on analysis and verification of time and schedul-
ing related properties. To this aim a concrete UML profile, called the
OMEGA-RT profile, is defined, dedicated to real-time modelling by
identifying a set of relevant concepts for real-time modelling which
can be considered as a refinement of the standard SPT profile. The
profile is based on a rich concept of event representing an instant of
state change, and allows the expression of duration constraints be-
tween occurrences of events. These constraints can be provided in
the form of OCL-like expressions annotating the specification or by
means of state machines, stereotyped as “observers”’. A framework
for modelling scheduling issues is obtained by adding a notion of
resource and a notion of execution time.

For proving the relevance of these choices, the profile has been
implemented in a validation tool and applied to case studies.

It has a formal semantics and is sufficiently general and expres-
sive to define a semantic underpinning for other real-time profiles of
UML which in general define more restricted frameworks. In partic-
ular, most existing profiles handling real-time issues define a number
of attributes representing particular durations or constraints on them
and their semantic interpretation can be expressed in the OMEGA-RT
profile.

1 Introduction

Building models which faithfully represent complex systems
is a non trivial problem and a prerequisite to the application
of formal analysis techniques. Usually, modelling techniques
are applied at early phases of system development and at high
abstraction level. Nevertheless, the need of a unified view of
the various development activities and of their interdependen-
cies motivated the so called model-based development [49]
which heavily relies on the use of modelling methods and

* This work has been partially supported by the 1ST-2002-33522 OMEGA
project

** VERIMAG is an academic research laboratory associated with CNRS,
Université Joseph Fourier and Institut Nationale Polytechnique de Grenoble

tools to provide support and guidance for system design and
validation.

UML has become by now a standard in the domain of
software development and starts to be adopted also in the
domain of real-time and embedded systems. UML aims at
providing an integrated modelling framework encompassing
software structure and architecture, as well as behaviour de-
scriptions. UML includes various behavioural notations, such
as communicating state machines and action language. To
cover real-time aspects, a profile for "Schedulability, perfor-
mance and time" (SPT) [48] has been standardised. It defines
most useful concepts, at least in an abstract manner. Never-
theless, it is incomplete, in the sense that it is biased versus
a use in sequence diagrams. Notice also that in most existing
frameworks based on or inspired by this profile, timing con-
straints are expressed without a well defined relationship to
a functional model (e.g., in the form of a task model with
periodicity constraints on tasks or by timed sequence dia-
grams,...) with the consequence that only the internal consis-
tency of the task model can be analysed, not its conformance
with the functional model.

1.1 Modelling time and timed behaviours

Typical categories of real-time properties that need to be ex-
pressed are

— Time dependent behaviour, which in practise is often
modelled by means of timers or explicit read access to
a system clock.

— Time related assumptions on the external environment of
the system and the underlying execution platform, such
as response times to requests, inter-occurrence times of
events, execution times of actions, ...

— Time related requirements, such as deadlines of actions
(tasks), constraints on end-to-end delays, and more gen-
erally, constraints on durations between any two events.

There exists a variety of semantic level modelling for-
malisms extended with time, such as timed Petri nets [57],

timed process algebras [45] and timed automata [4]. In pro-
cess algebras, timing is added by a “delay” construct simi-
lar to timeout or a wait construct, as they exist in real-time
programming languages. In Petri nets, minimal and maximal
waiting times are associated with states and transitions, and in
timed automata, variables called “clocks” increase with time
progress and can be set (to 0) so that they always measure
the time passed since they have been last set. All these for-
malisms represent machines that can perform two kinds of
state changes, time progress steps and actions, where actions
correspond to events, that is instantaneous changes of the dis-
crete state which may depend on time, whereas time steps do
not alter the discrete state.

Contrary to real-time programming languages where time
progress is considered as external - it can only be measured
and decisions may be taken depending on the current time -
modelling formalisms use a notion of logical time. Contrary
to physical time, logical time progress may depend on system
progress and can block, especially as a result of inconsistency
of timing constraints. A typical example of use of logical time
is the assumption of “maximal system progress”, as used for
example in the synchronous approach [8], where time pro-
gresses only when the system is idle.

For the expression of global real-time properties, there
exist extensions of logic based formalisms for expressing
real-time properties. Examples are TCTL [27] and TPTL [5],
where temporal logics are extended similar to timed automata
with clocks and constraints on their values.

Finally, there exist timed versions of scenario description
languages, such as Message Sequence Charts (MSC) [30],
event occurrences can be syntactically identified and their oc-
currence time or the duration between the occurrence times of
two event occurrences can be constrained.

1.2 Defining a framework for Timein UML

The UML Real-Time profile SPT is a first step in answer-
ing OMG’s request for a “UML-based paradigm for mod-
eling time-, schedulability-, and performance-related as-
pects of real-time system that would be used to (1) enable
the construction of models appropriate for quantitative anal-
ysis regarding these characteristics and (2) to enable inter-
operability between different analysis and design tools.”[48].
It includes features for describing a variety of aspects of real-
time systems, such as timing, resources, performance, etc.

The profile provides time related data types (Time and
Duration), as well as features to express both local and global
time constraints. The SPT profile defines

— anotion of timed eventsthat has been mainly intended for
defining constraints in timed scenarios,

— attributes of type duration, such as WCET (worst case ex-
ecution time), defining particular constraints

— local constraints that can be expressed using concepts
timer andclock.

SPT offers also some primitives for modelling resources
(Resource, ResourceUsage, ResourceManager, etc), schedul-

ing (Schedule, Scheduling Policy, Schedulable Resource, etc).
However these concepts are abstract, and in order to be used
in real projects, they need to be specialised into a concrete
real-time framework.

UML 2.0 [50] includes, contrary to UML 1.4, some time
related aspects, such as time related types and operational
time-related concepts (timer, clock). But currently, there is
no syntax for the expression of time constraints beyond time
dependent conditions in actions (which include transition
guards of state machines,...).

The aim of the profile defined in this paper is to make
concrete and to generalise the ideas present in the SPT pro-
file. As SPT, it offers several means for expressing time con-
straints (operational and constraint based ones). It defines a
concrete syntax, introduces expressive event based time con-
straints and extends their use from timed scenarios to other
behavioural formalisms, in particular timed state machines.
Concretely, the profile includes the following features:

— Operational concepts, as they exist in most modelling lan-
guages for real-times systems: a notion of system time,
which can be explicitly accessed in actions by an operator
now, as well as timers, which can be armed and provoke a
timeout event after a specified time, and clocks which can
be set and then read to measure the time passed since the
clock has been set (as in timed automata).

— A rich notion of timed event defining patterns of state
changes occurring during execution, as well as a data
structure defining a notion of observable state associated
with the identified state change which includes its occur-
rence time. The set of definable events defines the observ-
ability with respect to time progress, and thus the set of
expressible properties. In this profile, we make accessible
some events which are implicit in many approaches.

— A constraint-based formalism allowing to restrict the du-
ration between occurrences of events, expressive enough
to define all duration and constraint patterns as defined in
SPT (such as ResponseTime associated with calls, Inte-
rOccurrenceTime associated with events, WCET associ-
ated with actions, ...) and many more.

— Distinction between assumption and requirements by
qualifying constraints explicitly. In addition, a notion of
observer is introduced. An observer is a state machine
synchronising on events with two kinds of acceptance
states, “invalid” and “error” states. An observer defines a
(deterministic) automaton accepting sequences of occur-
rences of timed events. A sequence of events with an ex-
ecution avoiding invalid states is valid. A valid event se-
quence whose execution passes through an error state vi-
olates a required property and represents an error traces.

The paper is organised as follows. Section 2 gives an
overview on related work on the introduction of time in UML
and related modelling formalisms. Section 3 is the main part
and defines the real-time profile and its semantics. In sec-
tion 4, a short overview on a tool implementing this profile is
given as well as some perspectives for the future.

2 Related work

UML offers a variety of notations for capturing different as-
pects of software development. Real time issues have been
addressed more recently in UML. An early attempt of adding
time to UML is [19] which underlines the importance of time-
related information in real-time systems and distinguishes be-
tween six kinds of time (absolute, mission, friendly, simula-
tion, interval and duration), but does not define a concrete
framework defining and using these distinctions. Also some
UML-based CASE tools integrate timing aspects and several
frameworks have been proposed defining real-time versions
of a relatively small subset of UML: most of them consider
state machines for describing behaviours, but timed exten-
sions of OCL and entity-relationships are also considered.
Some frameworks for scheduling and QoS have been defined
as well.

Notice that several UML-based frameworks deal with
temporal aspects, meaning that they address dynamic aspects
and properties of (partial) orders of event occurrences. There
are also UML-based frameworks for real-time systems which
mainly address the need for particular communication and
execution modes (e.g. [17] defines a UML profile for system
design based on the synchronous approach) which is outside
the scope of this paper.

2.1 Adding timein other modelling frameworks

The question of how to add real-time features to a modelling
framework has been addressed also in other contexts. For-
malisms for modelling of asynchronous systems, like Room
[55] and the ITU! standard SDL [29] include basic concepts
for time, time-related data types (time and duration), and
timers for the specification of time dependent behaviour.

An interesting case is the framework defined at ITU for
the joint use of SDL and Message Sequence Charts (MSC)
[30] which are close to UML sequence diagrams. An oper-
ational model is specified in SDL, which includes features
for expressing the information provided in class diagrams,
architecture diagrams and state machines, whereas MSC are
used to express requirement in the form of scenarios which
should exist or represent undesirable behaviours. MSC in-
clude since the 2000 version occurrence time and time dis-
tance constraints in the standard (see for example [35,7,58,
37,20,63]). QSDL [18,44] defines an extension of SDL for
performance analysis with probabilistic execution time con-
straints attached with tasks and a notation for some minimal
deployment information. The proposal for extending SDL
with time defined in [11,23,25] has strongly influenced the
UML profile presented in this paper.

2.2 Timing in commercial UML tools

Commercial UML-based CASE tools taking into account
real-time are, for example, Rhapsody from I-logix [28], AR-

1 International Telecommunication Union

TISAN Real-Time Studio [6], Tau Generation-2 [60] and
RoSE-RT [52].

Rhapsody from I-logix includes a notion of timer associ-
ated with state machines, measuring the time passed since the
current state has been entered, for time dependent program-
ming. A system consists of a set of activity groups represent-
ing a thread, where within each activity group concurrency is
resolved deterministically. For individual activity groups se-
quential code is generated whereas different activity groups
are either distributed or scheduled based on RMA. This pro-
file has strongly influenced the UML profile defined in the
Omega project (see section 2.4).

ARTISAN Real-Time Studio extends UML to model the
system’s reaction to events, time constraints, concurrent tasks
and partitioning applications across multiple processors.

ROSE-RT, an evolution of Room, and Tau Generation-2,
an evolution of an SDL-based tool, are based on state ma-
chines communicating via asynchronous events. A global no-
tion of time is defined which can be used to define time
dependent behaviours using timers, time stamps and time
guards. Notice that the last two tools have more features of
modelling tools (for example, explicit non determinism).

2.3 Time extensions of subsets of UML

Several proposals of time extended versions of subsets of
UML have been made for providing validation support by
means of an existing validation method or tool.

State machine based approaches: Many approaches con-
sider systems where behaviours are defined by state ma-
chines. The approaches described in [38,34,16] use UML
state machines as a graphical representation of timed au-
tomata (and use class diagrams to provide the necessary
type information). In particular, like in timed automata, time
passes in states, whereas transitions are interpreted as in-
stantaneous state changes (events) which can be constrained
by time dependent guards. As a consequence, any event on
which a time constraint is defined must correspond to an ex-
plicit transition in some state machine. In [34], the technique
offered by standard UML is used that allows to specify that
a transition is fired after a certain amount of time has passed
since its source state has been entered. Communication may
take time, but maximal communication time is a parameter
defined uniformly for the entire model. Sequence diagrams
are used to express properties. Both are translated into timed
automata and verified using the model checking tool UppPAAL
[32]. [38] uses the UML after statement and an extension of
conditions with time to express general guarded timeouts to
represent timed state machines. This model is translated into
first order temporal logic with real time. A subset of specifi-
cations are translated into timed automata and checked with
the KRONOS [62] model-checker. In [16], hierarchical state
machines using the action language of UPPAAL are translated
first into hierarchical timed automata and then flattened to be
verified with the Uppaal model-checker.

[3] addresses the verification of real-time behavioural pat-
terns of embedded controllers by modelling with UML state
machines both, the controller and the system to be controlled.
These state machines are compiled to synchronous active
Java objects. Using the execution times of actions observed
for this implementation on the target platform, timed au-
tomata are constructed in which actions are represented as
pairs of transitions enforcing time progress by the observed
execution time. On these timed automata longest execution
paths for reactions of the object to environment requests are
computed and fed back into to original UML specification to-
gether with deadlines and more general timing requirements,
from which than a more abstractly timed annotated global
model is constructed and analysed. This is similar to an ap-
proach used successfully to Esterel models [12]. Such an ap-
proach should be supported by a real-time profile for UML.

In [56], events associated with communications (signal
transmission and operation call) can be referred to by prede-
fined names. Similar as in our profile, also implicit events,
such as “signal arrives in the destinator’s event queue” can
be constrained, and not only events corresponding to some
state machine transition. A timed semantics of a system is
given in terms of a temporal logic with two independent next
operators, one for system and one for time progress. It is not
clear, in how far the use of such a polymodal logic leads to
more interesting results than the use of timed automata, espe-
cially as for verification one of the two modalities has to be
eliminated.

OCL based approaches: [22] presents work on a UML pro-
file for real-time constraints specifications based on OCL 2.0
[47]. It consists in extending the OCL 2.0 meta-model with
concepts needed to express state chart configurations and se-
quences of them, so as to allow the expression of real-time
temporal properties in OCL. The semantics of the temporal
expressions is given in terms of a mapping to a real-time ver-
sion of temporal logic [54].

Approaches addressing scheduling and QoS in UML: [43]
specialises the SPT profile to better address RMA for dis-
tributed, critical and embedded applications domains, but it
offers little opening to other real-time analysis techniques.

Metropolis [51] has been defined outside UML, but pro-
poses also a UML profile. It defines a tool supported frame-
work for scheduling of tasks that allows to express deadlines,
execution times, scheduling policies, etc.

[31] addresses QoS prediction of systems defined by
UML state machines extended so as to model stochastic de-
cision processes. This is done by giving a stochastic interpre-
tation to the standard "after" operator.

2.4 Context of the OMEGA-RT profile

The UML real-time profile presented in this paper has been
developed in the context of the Omega project [13,24]. In
Omega, we have defined a UML profile for real-time and em-
bedded systems and supported it by several validation tools.

This profile generalises the Rhapsody UML profile by in-
creasing the potential of non determinism: set of objects can
be grouped into activity groupsrepresenting a mono-threaded
behaviour executing reactions to requests from the environ-
ment in run-to-completion steps. A reference semantics for
the operational part of this profile is given in [15] and imple-
mented in several tools.

This article presents the real-time part of the Omega pro-
file, called in the sequel OMEGA-RT profile. Notice that it is
mostly independent of the choices made for the operational
semantics. Nevertheless, it relies on the existence of activity
groups for defining tasks as scheduling entities.

In Omega, several specialisations of this profile have been
considered and and tool support has been provided for them:

— [61] defines a sub-profile in which behaviours of objects
are described by state machines extended with clocks and
time guards. Its semantics conforming to the Omega oper-
ational and real-time reference semantics is expressed in
terms of the typed logic of the interactive theorem prover
PV'S which is used for verification of real-time properties
expressed in temporal logic or OCL. In this profile, with
an operation call are associated 2 events, the moment at
which the call triggers a transition in the callee and the
end of the call, which are represented as synchronisations
between caller and callee.

— [36] defines a sub-profile of the OMEGA-RT profile for
OCL. The extension of OCL with a notion of event his-
tory can be used for defining arbitrary constraints on such
histories. A subset of the events identified in our profile
- those associated with communications - are considered
and identified by means of OCL concepts.

— [26] adapts Live Sequence Charts (LSC [14]) - a sort of
sequence diagrams extended with mandatory/optional be-
haviour - to the OMEGA-RT profile by extending them
with time guards and clocks progressing on an explicit
tick event. In this sub-profile, only communications via
signal exchange is considered, and a signal transmis-
sion defines a single event (all the events defined in the
OMEGA-RT profile define the same instant.

— [46,10] implements in the IF language and tool-set [9] the
operational part of the Omega profile and a large part of
the time extensions introduced here: in particular, timers
and clocks, the event definition mechanism introduced in
section 3.2, some of the duration expressions introduced
in section 3.3 and simple constraints, as well as UML ob-
servers. This tool-set offers several possibilities for ex-
ploring a time extended system specification and for for-
mally verifying that the operational part of the model, en-
forced by the assumptions implies the requirements?.

3 Framework for the definition of timed models

This section gives an overview of the constructs and notations
introduced in the OMEGA-RT profile. This profile intends to

2 formal verification is restricted to models with a finite state space.

Engine +owner
-rpm:Integer >
+start() 1
+accelerate(in d : Integer) Disol
tscreen Ispiay
1 +owner
By 1 +show()
1. +sensor +update()
[TemperatureSensor
«signal» «signal»
Warning criticalTemperature

in type : Integer in temperature : Integer

Fig. 1. UML class diagram for the example

make concrete the concepts defined in an abstract manner in
the SPT profile and to increase their expressive power in or-
der to address more general analysis techniques and in order
to define a framework for the definition of a notion of consis-
tency between different view points of a system.

The profile is based on the existence of two basic types,
time representing points in time instants and duration repre-
senting distances between time points. Sets of instants and
durations are expressed by means of predicates.

Operational concepts, as they exist also in UML 2.0 are
not discussed here in detail. There is a notion of clock which
can be set and then read to measure the time elapsed since the
clock has been set, and a notion of timer, which can be armed
and produce a timeout event after a specified duration.

We suppose the existence of a global reference time. As
proposed in SPT, local time can be defined by means of local
clocks, for which a maximal drift and/or offset with respect
to global time can be defined.

Section 3.2 introduces a mechanism for identifying events,
section 3.3 introduces duration expressions and section 3.5
defines a set of constraints. Section 3.4 defines an OCL-
based semantics for these notations. Section 3.6 introduces
observers as a more general framework for the definition of
constraints and section 3.7 defines some extensions needed
for taking into account scheduling related constraints.

3.1 Running example

In order to illustrate some missing features in the current ver-
sion of the SPT profile and to illustrate the features of the
OMEGA-RT profilewe use a small example.

Consider an Engine which displays information (temper-
ature, rotating speed, etc.) provided by sensors on some Dis-
play device. A part of the structure of a model for such a sys-
tem is shown in the class diagram in Figure 1. The require-
ments for this model contain the following time constraints:

: Display . Engine

I
criticalTemp}rature

. TemperatureSensor

/

]

{<50ms}

—r> accelerate(d)
B

{<20ms} {d<0}
update()

\

Fig. 2. Sequence diagram with a time constraint

(1) Between two consecutive calls made by an Engine to
the operation update of its Display, less than 100ms pass if
the Engine rotation speed (attribute rpm) exceeds 7000 at the
moment the first call to update is made.

(2) Between the moment the engine temperature becomes
critical (reception of signal criticalTemperature by the En-
gine fromthe TemperatureSensor) and the moment the engine
reacts by decreasing its speed (invocation of the Engine op-
eration accelerate with a negative parameter by the Engine
to itself) less than 50ms pass. Moreover, the Display shall re-
ceive an update from the Engine less than 20ms after the call
to accelerate.

These constraints cannot be captured by a standard UML
model. In current practice, constraint (2) is likely to be rep-
resented by a sequence diagram, such as the one in Figure 2.
But there are two problems with the sequence diagram repre-
sentation of the constraint:

— In the sequence diagram, it is not clear whether the first
event involved in the constraint is the reception of the crit-
ical Temperature signal or the consumption of the signal
by the Engine. Sequence diagrams offer no means to dis-
tinguish between these two events.

— There is no means in a sequence diagram to distinguish
optional events and mandatory events: property (2) does
not require a critical Temperature signal to be sent, but if
such a signal is received by the Engine, then a number of
reaction events must happen within some limited amount
of time.

3.2 Timed events

A purpose of the OMEGA-RT profile is the definition of time
constraints not only at the instance level, as this is presently
the case for timed sequence diagrams, but also at type level. A
TimedEvent is an instant of state change. It is defined as a type
level concepts and the corresponding instance level counter-
part is an event instance defined as an attribute of a class or
component of the system.

Event kinds define a syntactic classification of events.
Each event kind is associated to a syntactic entity and it de-
fines the relevant parameters of an event. For instance, in a
signal exchange, three event kinds can be identified which
make reference to the sender, the receiver, the concerned sig-
nal and its parameters:

— the send event - defining the moment at which the signal
is sent by the sender,

— the receivesignal event - defining the moment at which it
is received in the input queue of its target,

— and the acceptsignal event - defining the moment at which
the signal is processed (this corresponds to the implicit
discarding of the signal or to the instant at which a transi-
tion is triggered by the signal)

Only send a event and an acceptsignal event can be syn-
tactically identified on a state machine defining the behaviour
of the sender and the receiver, and the second one only under
the condition that the signal effectively triggers an explicit
transition (and is not implicitly discarded). A receivesignal
event is the instant at which the signal reaches the receiver’s
input queue cannot be syntactically captured as the transition
to which it is attached is implicitly defined.

An operation call defines six events (three correspond-
ing to the invocation, and three corresponding to the return)
which have the same kinds of parameters as the events asso-
ciated with signals. With state machine states, an enter and
exit event is associated which can make reference to the ob-
ject to which the state machine belongs and the name of the
state as well as any visible attribute. The appendix provides
an exhaustive list of the identified event kinds. They define
the granularity of the states and the occurrence times of tran-
sitions between them that can be observed. When a finer gran-
ularity is needed, this has to be modelled explicitly (e.g. a
transition with many actions needs to be cut into two transi-
tions if an intermediate state needs to be observed.

When a coarser grained observation is needed, some
events may be considered equivalent. In some contexts, it is
not useful to distinguish between the send and the receivesig-
nal event associated with an event.

An event type represents a pattern of event occur-
rences and is defined by a UML class stereotyped with
< TimedEvent>. An event instance is either local to a class
or component, or global to the model. A Local event is de-
fined as an attribute of some class or component present in
the model. Global events are defined as attributes of a spe-
cial class, stereotyped < TimeAnnotations> which is never
instantiated and is not part of the functional specification of
the model, it only collects global time constraints and their
events.

An event type can include local attributes storing event
parameters and information on the system state at event oc-
currence time (event memory). It is defined by an expression
which may include

— a mandatory matching clause describing the kind of event
and possibly names for some event parameters - specific
to its kind (e.g. for a send event the signal that is sent,
the target, etc.). The form of the matching clause depends
on the kind of the event (the examples below show the
matching condition for events associated with signals an
operation calls, and an exhaustive list can be found in the
appendix).

— an optional filter condition of the form

when b-expr

match invoke Display::update()
by e ond
when e.screen = d
do rpm = e.rpm

«TimedEvent»
InvokeUpdate

-rpm : Integer

Fig. 3. Event types extracted from the constraints

where the boolean expression b-expr can depend on the
names introduced in the matching condition and on any
attribute visible in the context of the event. The filter con-
dition allows refining the specification of the event type
defined by the matching condition, that is, it allows sub-
typing.
— an optional action statement of the form
doaction

where only allowed actions are those assigning a value
to local event attributes with no other side effect. Notice
that the value of a local attribute corresponding to a name
used in the matching clause is implicitly defined by this
use.

Example 1. Now we can define event types corresponding to
the events referred to in the example of section 3.1. Property
(1) refers to a single event, the moment an engine calls the
operation Update on its associated Display. Figure 3 shows
the definition of such an event type, called InvokeUpdate.
The matching clause
match invoke Display::Update by eon d
expresses the fact that an event of this type matches any oc-
currence of an invocation of Update of any object e of type
Engineto an object d of type Display. The filter condition
when e.screen=d
restricts it however to those occurrences in which the call is
made to the display defined by the engine’s attribute screen.
The action statement
dorpm:=erpm
has the effect that at occurrence of a matching event, the value
of the attribute rpm of the event is defined as the value of
rpm of the engine at this point of time (in the state before the
occurrence of the event). This is needed as property (1) re-
stricts the time constraint to those consecutive occurrences of
events of this type in which at the time of the earlier occur-
rence the rotation speed exceeds 7000. Notice that the filter
clause when e.screen = d is not necessary if it is impossible
that an engine calls Update on an object different from “its
screen”.

Figure 4 shows the definition of the event types needed
for property (2). The event type RevCritical corresponds to
the moment at which the temperature gets critical and is de-
fined here precisely as the moment in which the signal criti-
cal Temperature is received by the engine and not as the mo-
ment at which the engine reacts to it, which is ambiguous in
the sequence diagram of figure 2.

All events store also the identifier of the engine e corre-
sponding to the sender or receiver identified by the matching
clause. Section 3.3 shows why this attribute is needed. O

g
- by e

«TimedEvent»
RevCritical match receivesignal criticalTemperature(void)

-e : Engine

«TimedEvent»
InvDecelerate
-e : Engine

-delta : Integer

match invoke Engine::accelerate(delta)
byeone
when delta <0

o =]

«TimedEvent»
RcvUpdate
-e : Engine

match receive Display::update()
by d frome
when d.owner = e

—

Fig. 4. Event types extracted from the constraints

At any point of time of an execution, each event instance
has like any object a “current value” corresponding the values
defined by its most recent occurrence. In order to reason ex-
plicitly about older occurrences, we define event expressions
which are either an event instance or of the form E.pre for
some is an event expression E. The interpretation is that the
“current occurrence” of E.preis the second last occurrence of
E.

3.3 Duration expressions

The main aim of the OMEGA-RT profile is the definition of
constraints on durations between occurrences of events. A
difficulty is to provide a suitable mechanism for identifying
appropriate pairs of event occurrences defining a duration to
be constrained.

A possible mechanism consists in indexing events oc-
currences and defining the durations between occurrences of
events with indexes in some relationship. E.g., the “duration
between the it exit.state and the i + 1t" enter.state” (defining
the duration between two consecutive visits of state state).
While this is useful, it is clearly not sufficient in situations
where no relationship exists between the causal relationship
of events occurrences and their index.

Example 2. The duration between the moment at which a
signal is sent by a sender over an unreliable channel, and the
moment at which it is received by a receiver can not be ex-
pressed by means of a constraint on indexes of events ShdSig
and RcvSg as there may be much more occurrences of the
first event than of the second one. a

3.3.1 Basic durations

Our framework proposes the several mechanisms for the
identification of matching event occurrences. The simplest
one defines the duration between the most recent occurrences
of two event instances E1,E2:

Duration(EL, E2)

defines at any time, the time distance between the most recent
occurrence of E2 and the just preceding occurrence of E1.

Example 3. In the case that the events exit.state and en-
ter.state concern a single object, one can express the dura-
tion between two consecutive visits of state state by Du-
ration(exit.state, enter.state), and similarly, the duration be-
tween the moment that a signal is sent an the moment at
which it is received, if not lost, by Duration(ShdSg,RcvSg).
a

It is useful to increase the expressivity in two ways. On
one hand, one would like to consider a subset of such du-
rations. e.g. one may only be interested in the duration be-
tween exit.state and enter.state if the value of variable x has
increased at least by 100. Such restrictions will be defined by
constraints.

On the other hand, instead of the duration between the
most recent occurrences of two events, one is interested in
the duration between the most recent occurrences satisfying
some condition. For this purpose, we extend duration expres-
sions to

Duration(event -expr, event -expr)[b-expr]
The expression Duration(E1,E2)[match-cond] defines the
duration between the most recent pair of occurrences
(E1, E2) of the event expressions E1,E2 satisfying match-
cond(ELE2). Notice that Duration(E1,E2) is equivalent to
Duration(E1, E2)[true] and we also use an alternative syn-
tax:

Duration(E1,E2) match match-cond

In a pipelined computation, where each occurrence of E1
is followed by exactly one corresponding occurrence of E2
by preserving the order of the E1 occurrences,

Durationl ndexed(E1, E2))

measuring the time spent between the ith occurrence of an
event E1 and the ith occurrence of E2, defines the useful du-
rations to be constrained..

Example4. Let us explain the use of these duration expres-
sions on hand of the examples.

Property (1) of the example of section 3.1 defines a con-
straint which is local to the class Engine, and therefore the
instances of the events needed for its expression are defined
as local attributes of Engine (see figure 5). Such a local event
instance does only match occurrences concerning the object
to which it is attached, and it can only be used in local prop-
erties. The duration occurring in property (1) is then defined
by

Duration(evl.preevl)
where evl is a local attribute of type InvokeUpdate of En-
gine It represents the duration between two consecutive oc-
currences of event InvokeUpdate local to each object Engine.

Property (2) of the same example involves events of
several object, meaning that it needs to be expressed by
means of global events with instances attached with class
< TimeAnnotations>>. When there is more than one instance

of Engine in the system, it is necessary to restrict the dura-
tions between events to those associated with the same en-
gine. The duration between the starting point of the decelera-
tion of an engine and the update of the associated display can
be defined by

Duration(evDec,evUpd)
match evDec.e=evUpd.e

For evDec a global event instance of type InvDecelerate and
evUpd an attribute of type RcvUpdate. The match clause says
that we are not interested in the closest occurrences of InvDe-
celerate and RevUpdate, but in the closest ones concerning
the same engine e.

In this example, a notion of component containing a sin-
gle engine, its screen, and possibly other objects, and the
association of events and timed annotations with compo-
nents allows avoiding the use of the match clause. In a slid-
ing window protocol, however, an interesting duration is the
one between some events sendM and rcvAck carrying the
same sequence number. Using a duration of the form Du-
ration(EL1,E2) requires the introduction of a different event
type for each sequence number, whereas the use of a match
clause allows to simply write

Dur ation(sendM,rcvAck)
match sendM.sn=rcvAck.sn O

3.3.2 Predefined durations

SPT associates durations and constraint of them by associ-
ating them to features such as operations, signals, objects,...
Often, additional features, in particular operations need to be
introduced for representing the relevant durations. We pro-
pose the explicit definition of events for more expressivity
and flexibility for definition of durations. Nevertheless, such
duration patterns are useful shorthands. Examples are

— execution time, execution delay, client response time,
server response time, transmission delay which are asso-
ciated with actions (a call action for the last two)

— reactivity and period which are associated with a trigger

— transmission delay associated with a communication
channel

— lifetime associated with an object, and many more.

Our profile does not yield completeness with respect to pre-
defined durations. The idea is to define the useful ones in any
particular context. What our profile provides, is a means for
a semantic underpinning of such patterns.

A particular feature of the above mentioned durations is
that they concern events attached to the same object, which
simplifies the definition.

Example 5. For instance, the client response time of an op-
eration warning of class Engine can be associated with pro-
vided interfaces or with a particular call to warning (for ex-
ample a transition triggered by a call to warning).

warning.ResponseTime

defines the time elapsed between the reception of a call of
warning and the moment at which the return statement is ex-
ecuted. This duration defines implicitly two event types:

Ev1: match Receive Engine::warning
from sender

Ev2: match InvokeReturn Engine::warning
to sender

When there is never a call to warning before the preceding
call has been completely treated, the expression

Duration(evl,ev2)

on implicitly defined local attributes evl:E1 and ev2:E2 of
Engine defines the required client response time.

In the general case, where there may be several calls
which have been received but not yet treated, the expression
above is not correct as it defines the duration between an Ev1
and a directly following Ev2 event. In the context of Omega,
where calls are always considered as blocking, it is enough
to store the sender of each event occurrence and to use the
expression

Duration(evl,ev2) match evl.sender=ev2.sender O

3.4 Semantics

The profile is implemented by a mapping to the IF formal-
ism [9] which has a formal semantics. But we formalise the
profile also in UML itself, more precisely by means of OCL,
where, for increasing readability, we rather use an OCL-like
notation which can be transformed into OCL in a straight-
forward manner. Time constraints express constraint on oc-
currences of events, whereas OCL allows the expression of
properties of configurations, which are interpreted as invari-
ants, that is as a property of all configurations traversed by
any execution.

A purpose of the introduction of events is to make time
constraints dependent on the defined events, but not directly
on the entire state of the system. That means that events de-
fine the set of useful observations for reasoning about timing
constraints.

When OCL is used for defining semantics, event in-
stances have to be interpreted as objects which have a value
in every semantic level state. Where only duration expres-
sions making reference exclusively to the most recent occur-
rence of an event expression, it is sufficient to consider any
attribute E of type event as an object changing its value (its
local attributes and its occurrence time, denoted E.t), at each
occurrence. The event expression E.pre represents an object
holding at any time the “previous value” of E.

3.4.1 Events

In order to be able to define the semantics of duration expres-
sions containing a match clause as an invariant, this is not
sufficient. We consider that every attribute E of type event,
represents a dynamic linked list of event occurrences with
an accessor E.latest representing the most recent occurrence.

Each list is empty in the initial state. E.pre is defined by
E.prelatest pointing to the predecessor of E.latest.

We also introduce an expression E.preN(n) defining the
n before last element of the list associated with an event ex-
pression E; it is not accessible at the user level, but needed
for the definition of the semantics of duration expressions. It
is expressible in OCL by means of the defined primitives:

E.preN(n) = if n=0 then E.latest else E.pre.preN(n-1)

3.4.2 Duration expressions

Duration expressions are evaluated on a configuration of
events, that is the before mentioned lists of event occurrences
defining the semantics of a set of events.

The semantics of an expression of the form Duration(EL,
E2)[match-cond], is defined by:

Duration(E1,E2)[match-cond] =
if Ji € N: match-cond(EL.preN(i),E2)

then let k= min{i € N | match-cond(E1.preN(i),E2.|atest) }

in E2.latest.t — E1.preN(k).t
else Duration(E1,E2.pre)[match-cond]

where the minus represents the distance operator on type
Time and has as result a duration.

In order to define the semantics of the indexwise dura-
tion, we need a function index that defines the index of each
element in the occurrence list associated with an event ex-
pression E. Its definition needs an additional primitive E.first®
defining the first element of the list associated with an event.

Eindex={i e N* | E.preN(i — 1) = E.first}
The index-wise duration can now be defined as:

Durationlndexed(E1,E2) =
Duration(E1,E2)[El.index= E2.indeX]

3.5 Time constraints

Time constraints are boolean expressions involving durations.
In explicitly time dependent models with timers and clocks,
boolean expressions involving timers and clocks can be used
in the action language, in particular in guards or in decisions.
In principle, any boolean OCL expression can be used in
timed annotations. [46], the tool providing the most complete
tool support for this profile, handles only a subset of simple
constraints corresponding to conditional constraints involv-
ing 2 events. They extend constraints as they are used in SPT.
Constraints involving more than 2 events are expressed by
observers®. The considered expressions are of the form

duration-expr * duration-constant
when b-expr

where * is any comparison operator® and b-expr may
depend on the attributes of the events occurring in

3 which is the element E.preN(k) such that E.preN(k+1) is undefined, but
such a definition is not allowed in OCL

4 SPT proposes sequence diagrams for the same purpose
Sxe{<,g=>.>}

timedevents { evl : InvokeUpdate } -
timeconstraints { Engine
require -rpm:Integer
Duration(evl.pre, evl) <= 100 when evl.rpm >= 7000 s

} +accelerate(in d : Integer)

Fig. 5. Expression of property 1

. . «TimeAnnotations»
timeconstraints { Constraint2part
require

Duration(evDec,evUpd)[evDec.e=evUpd.e] <= 20 ammm-q-—=="| €VDEC : InvDecelerate
} -evUpd : RcvUpdate

Fig. 6. Second part of property (2)

duration-expr. It expresses the following invariant:
in any state, the value of duration-expr must sat-
isfy the constraint expressed by duration-expr *
duration-constant under the condition that b-expr
holds for the attributes of the event occurrences identified by
the evaluation of duration-expr. As constraints depend
only on the implied events, it is enough to evaluate them at
occurrences of the second event in duration-expr

Example 6. Property (1) of the example defined in sec-
tion 3.1 is shown in Figure 5. It constrains the duration be-
tween the two most recent occurrences of the event Invoke-
Update to be smaller than 100, but only when attribute rpm
of the older occurrence is greater than 7000. Property (2) in-
volves 3 events. The constraint shown in Figure 6 expresses
the second part of this property, but it is only required if be-
forehand a signal critical Temperature has been received and
deceleration has started within the required reaction interval.
O

Constraints in time annotations define invariants of the
model and can play two different roles:

— they may represent assumptions on the environment or
the underlying execution platform,

— or requirements, that is properties which should be deriv-
able from the model

We distinguish these two kinds of constraints by means
of explicit keywords assume and require. The constraints
shown in the example are all requirements.

SPT offers tagged values that represent attributes of the
execution (deadline, WCET, etc) to express time constraints.
Our profile does not define such attributes, but it provides
the semantic basis allowing their formal definition. For in-
stance, referring to the example in section 3.3.2, the deadline
attribute for an operation may in our setting define a con-
straint of the form

warning.ResponseTime < deadline

where deadline is an attribute of type duration of the class
engine. We allow more fine grained constraints

3.6 Observers

In order to express assumptions and requirements involving
conditions which are more complex than the distance be-
tween two events, we define an operational formalism called
observers.

3.6.1 The observer concept

An observer is an object which executes synchronously with
a system and monitors its state and the events that are oc-
curring. It may have a local memory (attributes) and its be-
haviour is described by a state machine. Contrary to objects
of a system, the observer’s state machine does not react to lo-
cal conditions or to signals exchanged with other objects, but
to events occurring in the system’s execution and conditions
satisfied by the system’s state.

Observers have unlimited visibility over the objects com-
posing the system (they may observe state machine states, at-
tribute values, etc of any object) and mechanisms for captur-
ing occurrences of events of the types defined in section 3.2.

In order to express assumptions and requirements, some
of the states of the observer’s state machine be qualified as
invalid or error states:

— invalid states express the violation of assumptionson sys-
tem executions. A system execution which leads an ob-
server through an invalid state is not considered as a part
of the semantics of the system, only complete executions
avoiding invalid states are valid executions.

error states express requirements (properties) that have to
be satisfied by the system, i.e. that have to be implied by
the functional semantics of the system under the speci-
fied assumptions. A valid execution which leads an ob-
server through an error state represents a violation of the
requirement.

3.6.2 Syntax

Syntactically, observers are defined in a UML model
by stereotyping classes with <observer>>. The states of
the state machine are classified using two stereotypes:
<invalid> and <error>>. Finally, reactions to events are
specified in transition triggers using the same syntax as de-
fined in section 3.2. A trigger may be either just a matching
clause (as used in the definition of event types) or an event ex-
pression where a corresponding instance must be declared lo-
cally as an attribute of the observer class of some event type).

Example 7. The observer in Figure 7 specifies property (2)
from section 3.1 in a system with a unique object of type
engine. It involves three events as defined in figure 4 and has
a local attribute for matching each of them.

After the occurrence of an event of type RevCritical, it
expects to observe the occurrence of an event InvokeDeceler-
ate. If no observable event occurs before 50ms have passed,

10

«Observer»
Top Package:: Constraint2
-rc : RevCritical
-id : InvDecelerate

-ru : RevUpdate
-x : Clock

<<error>>
KO

ru / x.reset()

Fig. 7. Example of observer for a safety property.

the transition leading to the error state is executed. The sec-
ond part of the observer (the behaviour in state WRU rep-
resents the constraint of Figure 6. The observer defines pre-
cisely the condition on previous observations under which the
constraint must hold. To express the constraints on durations,
this observer does not use the occurrence time attribute of
events, but a unique attribute x of type Clock. This is enough,
as at any time only the duration since the previous observation
is needed. Whenever an observable event occurs triggering no
transition, it is simply ignored.

When there are several engines which should have the
same property, possibly created and deleted dynamically dur-
ing the lifetime of the system, then the observer class needs
an additional attribute of type engine, and only events of “its
engine” will trigger transition (by means of an additional
guard on transitions). An additional observer creates/deletes
an instance of such an observer, whenever it detects the cre-
ation/deletion of an engine. O

Notice also that the use of observers is not restricted to
timing properties. They represent also an interesting means
for the expression of more complex, data-oriented properties.

3.7 Scheduling related concepts

Constraints on durations between events, as they have been
defined so far, do not allow to distinguish between distributed
and scheduled execution. Duration constraint of causally in-
dependent parts are independent. Going towards an imple-
mentation means to consider scheduling constraint that is tak-
ing into account sequentialisations of executions of indepen-
dent actions due to a restricted number of processors exe-
cuting them or the need to share other resources. In order
to add this information to the model, a notion of resource
is introduced, as well as primitives to bind activities to re-
sources. When the envisaged scheduling policy of indepen-
dent actions on a (set of) processors is non preemptive, the
so far introduce notion of a “duration” of the execution of
an action is no more sufficient. It necessary to distinguish its
duration of some action and its execution time. When only
non-preemptive scheduling is considered, execution time and
duration of actions coincide, but it is necessary to define the

granularity of scheduled tasks, that is the points of execution
at which the execution switches between independent actions.

3.7.1 Task

We propose to use the notion of activity groups as they exist
in the Omega profile to define sequence of actions which are
scheduling entities, called tasks. In the Omega profile, an ac-
tivity group is a set of objects grouped around an instance of
an active class which represents a single threaded behaviour
in which the reaction to an external trigger is computed in
a run-to-completion step, without further acceptance of re-
quests from the environment. Such a run-to-completion step
represents a task. Activity groups do not share variables, and
therefore all tasks are executed on the same processor can be
scheduled with or without preemption. At semantic level, an
activity group is in an inactive state, when all its objects are
stable (have no enabled transition). The presence of a signal
or an operation call in the input queue and/or the satisfaction
of a time dependent condition may activate one of its tasks
and bring the activity group into an active state.

Within an activity group, several tasks may be enabled
at the same time (e.g. if several signals/calls wait to be pro-
cessed) and the order in which they are executed must be de-
fined. Notice however, that the notion of run-to-completion
step forbids interleaving of activities being part of the re-
sponse to distinct requests. A run-to-completion step may
have a complex structure and involve many objects and even
concurrent activities. That is, in turn, a run-to-completion
step must be scheduled®. In Omega, we consider that the tasks
of this second scheduling problem are the transitions of the
state machines associated with an individual object, that is
the notion of structure provided by state-machines is used for
defining tasks.

In the context of UML 2.0, architecture diagrams can be
used to define a hierarchical notion of activity group, active
state, task, ...

3.7.2 Resource

Resources represent mutual exclusion constraints which are
not defined in the functional model, in particular shared re-
sources (like processors) related to the computation plat-
form which have no functional meaning but determine timing
properties. As in SPT, for such resources, an explicit notion of
resource is introduced as classes stereotyped <resource.
Resources have attributes defining the kind of scheduling that
they allow (no scheduling, preemptive of non-preemptive).
Instances of resources have no explicit behaviour associated.

Due to dynamic nature of UML specifications, we pro-
pose a dynamic means for specifying the resources that a task
needs to execute: as for timing we propose

6 In current practise, each run-to completion step is scheduled offline, and
sequential code is generated, whereas, activity groups are scheduled dynam-
ically.

— an operational way by means of the actions acquire(r) -
from that point on resource r is needed to execute - and
release(r).

— in the form of annotations associated with events. This
has the advantage of providing a better separation be-
tween functional and non functional specification where
nevertheless the relationship is precisely defined by
means of events.

At semantic level, resources are only required in the ac-
tivestate, which has two substates: in the state executing state,
it owns all required resources in mutual exclusion, whereas in
the suspended state, it is waiting to obtain some resource.

All objects of the system which can be accessed concur-
rently by more than one object to execute requests represent
resources. In principle, accesses to such a resource are spec-
ified in the functional model, and it is not necessary to ex-
plicitly introduce a <resource>> for them. But when several
actions need to be executed atomically, then it is important
to be able to specify this. For this kind of mutual exclusion,
the profile introduces a notion of atomic action, blocking the
access from other activity groupsto any object in between to
accesses by the atomic action.

3.7.3 Execution time

The execution time of an action is defined relative to an ac-
tivity group as the cumulated time in the executing state be-
tween the start and the end event associated with the action.
Execution times can be specified by an expression of the form

ExecTime(E1, E2)

where E1 and E2 concern the same object. Alternatively, the
execution time of a task associated with an activity group
is associated with a trigger and is implicitly defined as the
time between the acceptance of the trigger and the moment
in which the activity group enters again an inactive state.

3.7.4 Scheduling policies

Scheduling is the sequential ordering of concurrently enabled
activities, which share resources. A well defined theory for
solving the scheduling problem is defined only in restricted
settings [39,53,59,42], but there exist recent results on more
general frameworks [21,1,33,2]. A general framework for
expressing all kinds of scheduling constraints as well as some
results on schedulability are given in [40,41].

Any scheduling policy (including RMS, EDF,ELF,...) can
be expressed by means of dynamic priority rules [41]. In or-
der to provide expressivity, our framework includes dynamic
priority rules, that we view as complement to scheduling
policies defined by keywords such as proposed by the SPT.
A priority rule is of the form

cl:ipl<c2:p2 if b-expr

where pi represents any object of class ci and b-expr is a con-
dition on the current state.

Example 8. Dynamic priority rules are useful for both, the
specification of scheduling policies and of execution modes.
For example, the run-to-completion execution mode for ac-
tivity groups can be specified by the following rule:

pl< p2 if p2 = pl.manager

This rule says that the manager object of an activity group has
less priority than other objects of the group. This is due to the
fact that the task of the manager object consist in accepting
new requests which is only allowed when the previous re-
quest has been handled (all objects are stable). O

As the non determinism to be resolved by a scheduler
might appear at any level of the model hierarchy, also priori-
ties are organised in a hierarchical manner: rules for eliminat-
ing non determinism amongst concurrent entities are attached
with an entity at higher level of hierarchy. For example,

— the priority rules between activity groups executing on the
same resource are associated with the resource;

— the priority rules defining the choice between the enabled
triggers within an activity group are associated with the
active object. This way, an active object is a kind of local
scheduler.

4 Conclusions

In this paper we describe an approach for enriching UML
models with time and scheduling related information. The de-
fined framework has a semantic underpinning and is compati-
ble with the UML Real-Time profile for Performance Schedul -
ing and Real-Time in the sense that it uses the concepts iden-
tified there to define a concrete and expressive framework.

A key point of our framework is the introduction of a con-
crete UML syntax for a set of events identifying the instants
during the lifetime of the system under some time constraint.
Duration expressions represent the time elapsed between cer-
tain occurrences of events. Our profile goes much further than
SPT concerning the set of identifiable event occurrence pairs
that can be constrained.

In fact, the profile defined here can be used to provide
a precise semantics for durations and constraints defined in
SPT and some of its extensions in the form of attributes. SPT
does not fix an interpretation, but leaves this to the tools. The
semantics used by different tools can be expressed using our
profile. Our profile provides a means for defining such a se-
mantics by means of a set of events and modalities for ex-
pressing durations.

The introduced notion of event is rich enough to define
an observation criterion for verifying timed properties of the
system: the semantics of timing properties depends only on
the set of defined events, meaning that any abstraction of the
system preserving the observations of events is sufficient to
verify the time related properties.

In fact, events are the basis for the definition of the con-
sistency relation between different views of the system. In
[46], we use them to define the relationship between a global

12

view provided by observers and an operational view provided
by state machines defining object behaviours, but in the same
way, they can also been used to relate Sequence Diagrams
to an operational view. This means also that profile is not
bound to a particular interpretation of operational specifica-
tions. Time constraints and observers can be evaluated on any
set of behaviours defined by sequences of occurrences of ob-
servable events.

An important contribution of our profile, are the intro-
duction of UML observers. They are more powerful than se-
quence diagrams for the expression of global properties and
have been used successfully in other contexts, for example
SDL. Here, we have shown their use for the expression of
timed properties, but observers - together with events - can
also be used for the expression of complex behavioural prop-
erties of a system. For example, the event InvokeUpdate can
not be used only to define a time constraint between the oc-
currence time of two consecutive events, but also to limit the
difference of the rotation speed.

An important difference with the SPT profile, in particu-
lar sequence diagrams, is that time extensions are defined at
class level and not at object level. This increases the expres-
siveness, but explains also some increase in complexity.

As already mentioned in section 2.4, parts of this profile
have been adapted and supported by verification tools. Tool
support for most of the profile is provided by the tool de-
scribed in [46]. This tool represents UML specifications re-
specting the restrictions of the Omega profile by means of a
dynamic set of communicating timed automata extended with
data and actions, as they are defined by the IF format [9]. All
events are identified by a set of transitions in the correspond-
ing IF specification, but the information concerning an event
occurrence is stored only in constraints needing it. UML ob-
servers are represented by IF observers. Timed annotations
which are local to an object are represented by additional lo-
cal attributes and timed annotations of the extended automa-
ton representing the the behaviour of the object. Global time
constraints are represented by IF observers. The naive repre-
sentation of constraints involving duration expressions with
matching conditions by timed automata is impractical for val-
idation as it results in the dynamic generation of a large num-
ber of instances of timed observers. The main challenge con-
sists in finding criteria for the deletion of observers, when
either the expected event can not be observed anymore in the
future, or its observation beyond some point of time doesn’t
change the validation result. Such criteria can be found by
means of static analysis of the system.

Using this tool-set, we have successfully used our profile
for small UML models. In the context of the Omega project,
we have also used a restricted subset of the profile (no dy-
namic creation of observers is needed in this example) and
applied it successfully to a model of the Ariane-5 flight pro-
gram, which represent a realistic case study.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Y. Abdeddaim, E. Asarin, and O. Maler. On optimal scheduling
under uncertainty. In Proceedings of TACAS 2003, Warsaw,
LNCS, 2003.

Y. Abdeddaim, E. Asarin, and O. Maler. Scheduling with timed
automata. In submitted to TCS, 2004.

J. Aghav and C. Petitpierre. Validating real-time behavioral pat-
terns of embedded controllers. In SVERTS - Specification and
Validation of UML models for Real Time and Embedded Sys-
tems, workshop at UML 2003, CA, USA, October 2003, Pro-
ceedings, 2003.

R. Alur and D. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126:183-235, 1994,

R. Alur and T.A. Henzinger. A really temporal logic. Journal
of the ACM, 41:181-204, 1994. (a preliminary version appeared
in the Proc. 30th FOCS 1989).

Artisan Real Time Sudio, 2001.

H. Ben-Abdalla and S. Leue. Expressing and analysing timing
constraints in message sequence chart specifications. Technical
report, U. of Waterloo, 1997.

A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le
Guernic, and R. de Simone. The synchronous languages 12
years later. Proceedings of the |EEE, 91(1), January 2003.
Marius Bozga, Susanne Graf, and L. Mounier. IF-2.0: A val-
idation environment for component-based real-time systems.
In Proceedings of Conference on Computer Aided Verification,
CAV' 02, Copenhagen, number 2404 in LNCS. Springer Verlag,
June 2002.

Marius Bozga, Susanne Graf, lleana Ober, lulian Ober, and
Joseph Sifakis. The IF toolset. In SFM-04:RT 4th Int. School
on Formal Methods for the Design of Computer, Communica-
tion and Software Systems: Real Time, LNCS, June 2004.
Marius Bozga, Susanne Graf Alain Kerbrat, Laurent Mounier,
lulian Ober, and Daniel Vincent. Timed extensions for SDL. In
SDL Forum 2001. LNCS, June 2001.

E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and
S. Yovine. Taxys: a tool for the developpment and verifica-
tion real-time embedded systems. In G. Berry, H. Comon, and
A. Finkel, editors, Proc. CAV’' 01, LNCS2102. Springer, 2001.
OMEGA Consortium. Webpage of the OMEGA IST project.
http://www-omega.imag.fr/.

W. Damm and D. Harel. LSCs: Breathing life into Message
Sequence Charts. In P. Ciancarini, A. Fantechi, and R. Gorri-
eri, editors, FMOODS 99 |FIP TC6/WG6.1 Third International
Conference on Formal Methods for Open Object-Based Dis-
tributed Systems. Kluwer Academic Publishers, 1999. Journal
Version to appear in Journal on Formal Methods in System De-
sign, July 2001.

Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika
\otintseva. A formal semantics for a UML kernel language.
In Frank de Boer, Marcello Bonsangue, Susanne Graf, and
Willem-Paul de Roever, editors, 1st Symposium on Formal
Methods for Components and Objects, revised lectures, volume
2852 of LNCSTutorials, 2003.

Alexandre David, Oliver Méller, and Wang Yi. Formal verifica-
tion UML statecharts with real time extensions. In Proceedings
of FASE 2002 (ETAPS 2002), volume 2306 of LNCS. Springer-
Verlag, April 2002.

Robert de Simone and Charles André. Towards a “Synchronous
Reactive” UML profile. In SVERTS - Specification and Vali-
dation of UML models for Real Time and Embedded Systems,

13

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

3L

32.

33.

workshop at UML 2003, CA, USA, October 2003, Proceedings,
2003.

M. Diefenbruch, E. Heck, J. Hintelmann, and B. Miiller-
Clostermann. Performance evaluation of SDL systems adjunct
by queuing models. In Proc. of SDL-Forum, 1995.

Bruce Powel Douglass. Doing Hard Time, Developing Real-
Time Systems with UML, Objects, Frameworks, and Patterns.
Object Technology Series. Addison-Wesley, 1999.

N. Faltin, L. Lambert, A. Mitschele-Thiel, and F. Slomka. An
annotational extension of message sequence charts to support
performance engineering. In 8th SDL Forum. North-Holland,
1997.

Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang
Yi. Schedulability anaysis using two clocks. In ETAPS 2003,
2003.

Stephan Flake and Wolfgang Mueller. A UML Profile for Real-
Time Constraints with the OCL. In S. Cook J. M. Jézéquel,
H. Hussmann, editor, UML’2002, Dresden, Germany, number
2460 in LNCS. Springer Verlag, 2002.

Susanne Graf. Expression of time and duration constraints in
SDL. In 3rd SAM Workshop on SDL and MSC, University of
Wales Aberystwyth, number 2599 in LNCS, June 2002.
Susanne Graf and Jozef Hooman. Correct development of
embedded systems. In European Workshop on Software Ar-
chitecture: Languages, Styles, Models, Tools, and Applications
(EWSA 2004), co-located with ICSE 2004, & Andrews, Scot-
land, LNCS, May 2004.

Susanne Graf and Ileana Ober. A real-time profile for UML and
how to adapt itto SDL. In SDL Forum 2003, July 1-4, Suttgart,
number 2708 in LNCS, July 2003.

D. Harel and R. Marelly. Playing with time: On the specification
and execution of time-enriched LSCs. In Proc. 10th IEEE/ACM
Int. Symp. on Modeling, Analysis and Smulation of Computer
and Telecommunication Systems (MASCOTS2002), Fort Worth,
Texas, 2002.

Eyal Harel, Orna Lichtenstein, and Amir Pnueli. Explicit clock
temporal logic. In In Proceedings, 5th IEEE Symposium on
Logic in Computer Science, LICS 90, Philadelphia, Pennsylva-
nia, pages 402-413. IEEE Computer Society Press, 1990.
llogix. Rhapsody development environment.

ITU-T. Recommendation Z.100. Specification and Descrip-
tion Language (SDL). Technical Report Z-100, International
Telecommunication Union — Standardization Sector, Genéve,
November 2000.

ITU-T. Recommendation Z.120. Message Sequence Charts.
Technical Report Z-120, International Telecommunication
Union — Standardization Sector, Genéve, 2000.

David N. Jansen, Holger Hermanns, and Joost-Pieter Katoen. A
QoS-oriented extension of UML statecharts. In Perdita Stevens,
Jon Whittle, and Grady Booch, editors, UML 2003 - The Uni-
fied Modeling Language. Model Languages and Applications.
6th International Conference, San Francisco, CA, USA, Octo-
ber 2003, Proceedings, volume 2863 of LNCS pages 76-91.
Springer, 2003.

H. Jensen, K.G. Larsen, and A. Skou. Scaling up UPPAAL: Au-
tomatic verification of real-time systems using compositionality
and abstraction. In FTRTFT 2000, 2000.

Christos Kloukinas and Sergio Yovine. Synthesis of safe,
QoS extendible, application specific schedulers for heteroge-
neous real-time systems. In Proceedings of the 15th Euromicro
Conference on Real-Time Systems (ECRTS 03), ISBN 0-7695-
1936-9, 2003.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.
51.
52.
53.

Alexander Knapp, Stephan Merz, and Christopher Rauh. Model
Checking - Timed UML State Machines and Collaborations. In
Formal Techniques in Real-Time and Fault-Tolerant Systems,
7th International Symposium, FTRTFT 2002, Oldenburg, Ger-
many, September 9-12, 2002, volume 2469 of Lecture Notesin
Computer Science, pages 395-416. Springer, 2002.

P. Kosiuczenko. Formalizing time aspects in message se-
quence charts. Technical report nr. 9703, Ludwig-Maximilians-
Universitat Minchen Institut fir Informatik, 1997.

Marcel Kyas and Frank S. de Boer. On message specification in
OCL. In Frank S. de Boer, Marcello Bonsangue, and Bernhard
Josko, editors, Compositional Verification in UML, 2003.

L. Lambert. Pmsc for performance evaluation. In 1st Workshop
on Performance and Time in SDL and MSC, Technical Report
1/98, IMMD VI, University of Erlangen-Nuremberg, 1998.
Luigi Lavazza, Gabriele Quaroni, and Matteo Venturelli. Com-
bining UML and formal notions for modelling real-time sys-
tems. In Joint 8th European Software Engineering Conference,
9th ACM SIGSOFT. ACM SIGSOFT, 2001.

J.W. Layland and C.L. Liu. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
ACM, 20(1), 1973.

Gregor GoRler and Joseph Sifakis. Component-based construc-
tion of deadlock-free systems. In proceedings of FSTTCS2003,
Mumbai, India, LNCS 2914, pages 420-433, 2003. download-
able through http://www-verimag.imag.fr/ sifakis/.

Gregor GoRler and Joseph Sifakis. Priority systems. In ac-
cepted for publication in the proceedings of FMCO' 03, LNCS,
2004.

Giuseppe Lipari and Giorgio Buttazzo. Schedulability analysis
of periodic and aperiodic tasks with resource constraints. Jour-
nal of System Architecture, Special Isssue on Real Time Sys-
tems, 2000.

Jean-Noél Meunier, Frank Lippert, and Ravi Jadhav. RT mod-
elling with UML for safety critical applications: the HIDOORS
project example. In SVERTS - Specification and Validation of
UML models for Real Time and Embedded Systems, workshop
at UML 2003, CA, USA, October 2003, Proceedings, 2003.

A. Mitschele-Thiehl and B. Muller-Clostermann. Performance
engineering of SDL/MSC systems. Computer Networks 31(17):
1801-1815, 1999.

X. Nicollin and J. Sifakis. An Overview and Synthesis on
Timed Process Algebras. In Proc. CAV'91, volume 575 of
LNCS Springer-Verlag, July 1991.

lulian Ober, Susanne Graf, and lleana Ober. Model checking of
UML models via a mapping to communicating extended timed
automata. In 11th International SPIN Workshop on Model
Checking of Software, 2004, volume LNCS 2989, 2004.

OMG Unified Modeling Language Specification - Object Con-
straint Language Version 2.0, 2003.

OMG. Response to the OMG RFP for Schedulability, Perfor-
mance and Time, v. 2.0. OMG document ad/2002-03-04, March
2002.

OMG. Model Driven Architecture. http://www.omg.org/mda,
2003.

OMG. UML 2.0 Superstructure proposal v.2.0., January 2003.
Metropolis project. http://www.eecs.berkeley.edu/ polis/metro.
Rational/IBM. Rose real-time development environment.
Ragunthan Rjakumar, Liu Sha, John Lehoczky, and Krithi Ra-
mamritham. Advances in Real Time Systems, chapter An opti-
mal priority inheritance policy for synchronization in real-time
systems. Prentice-Hall, 1995.

14

54

55.

56.

57.

58.

59.

60.

61.

62.

63.

5

. J. Ruf and T. Kropf. Symbolic Model and Checking for a Dis-
crete Clocked Temporal Logic with Intervals. In CHARME' 97,
Montreal, Canada, pages 146-166, 1997.

B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

Subash Shankar and Sinan Asa. Formal semantics of UML
with real-time constructs. In Perdita Stevens, Jon Whittle, and
Grady Booch, editors, UML 2003 - The Unified Modeling Lan-
guage. Model Languages and Applications. 6th International
Conference, San Francisco, CA, USA, October 2003, Proceed-
ings, volume 2863 of LNCS pages 60-75. Springer, 2003.

J. Sifakis. Use of Petri Nets for Performance Evaluation. In
Proc. 3rd Intl. Symposium on Modeling and Evaluation, pages
75-93. IFIP, North Holland, 1977.

F. Slomka, J. Zant, and L. Lambert. Msc-based schedulability
analysis. In 1st Workshop on Performance and Time in SDL
and MSC, Technical Report 1/98, IMMD VII, University of
Erlangen-Nuremberg, 1998.

Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic tasks
in dynamic priority systems. Journal of Real Time Systems,
1996.

Telelogic. TAU Generation 2 Reference Manual, 2002.

Mark van der Zwaag and Jozef Hooman. A semantics of com-
municating reactive objects with timing. In SVERTS- Specifica-
tion and Validation of UML models for Real Time and Embed-
ded Systems, workshop at UML 2003, CA, USA, October 2003,
Proceedings, 2003.

S. Yovine. KRONOS: A verification tool for real-time systems.
Soringer International Journal of Software Tools for Technol-
ogy Transfer, 1(1-2), December 1997.

Tong Zheng and Ferhat Khendek. Time consistency of msc-
2000 specifications. Computer Networks, 42(3):303-322, 2003.

Annex: List of event kinds

This annex contains the list of identified event kinds. as well

as

the corresponding matching statement, which defines its

parameters and implicit do statements.
Event kinds associated with a signal transmission:

- send - instant of signal emission:

match send <signal>(<ident-list>)
by <ident> to <ident>

where the optional by identifier represents the sender,
the to identifier the receiver, <signal>(<ident-list>)
designates a signal and its parameters.

- receivesignal - instant of signal reception:

match receivesignal <signal>(<ident-list>)
by <ident> from <ident>

where the by identifier represents the receiver,
the from identifier the sender

acceptsignal - instant of start of signal processing by the

receiver:

match acceptsignal <signal>(<ident-list>)
by <ident> from <ident>

parameters as for receivesignal.

Event kinds associated with an operation call:

nvoke - instant of call by the caller:
match invoke <class>::<operation>(<ident-list>)

by <ident> on <ident>
where the optional by identifier represents the caller, the
on identifier the callee and <class> the optional callee class
and <operation>(<ident-list>) a method of the callee with
its parameters.
- receive - instant of call reception by the callee:
match receive <class>::<operation>(<ident-list>)
by <ident> from <ident>
where the optional by identifier represents the callee, and
the from identifier the caller
- accept - instant of start of operation execution:
match accept <class>::<operation>(<ident-list>)
by <ident> from <ident>
- invokereturn - instant of emission of “return”:
match invokereturn <class>::<operation>(<ident-list>)
by <ident> to <ident>
where the optional by identifier represents the callee, the
to identifier the caller of the operation.
- receivereturn - instant of reception of “return” by the caller:
match receivereturn <class>::<operation>(<ident-list>)
by <ident> from <ident>
where the optional by identifier represents the caller, the
from identifier the callee
- acceptreturn - instant of call termination:
match acceptreturn <class>::<operation>(<ident-list>)
by <ident> from <ident>

Event kinds associated with an action specification:
- start - the instant of start of action execution
- end - the instant of end of action execution
- startend - instant of execution, if instantaneous action:
match {start | end | startend} <class>@<label>
where <class> designates the class of the action and
<label> its label.

Event kinds associated with a state machine transition:
- starttrans - the instant of start of transition execution
(trigger consumption)

- endtrans - the instant of end of transition execution
(enter target state)
- startendtrans - the instant of the execution of an
instantaneous transition
match {starttrans| endtrans| startendtrans}
<class>@-<transitionname>
where <class> designates the class of the transition
and <transitionname> its name.

Event kinds associated with a state machine state:
- enter - the instant at which a state is entered
- exit - the instant at which a state is left
match {enter | exit} <class>@<statename>
where <class> designates the class of the state
and <statename> its name

Event kinds associated with an object:
- create - the instant at which the object is created
- delete - the instant at which the object is deleted
match {create| delete} <class>
where <class> designates the class of the created
or deleted object.

15

Event kinds associated with a timer:

- occur - the instant of timer expiration
- timeout - the instant of timer consumption
match {occur | timeout} <class>::<timer>
where <class> designates the class and <timer> a timer
attribute of this class. Other important instants associated
with timers are those associated with the instantaneous
actions set and reset.

Event kinds associated with a resource:

- startresource - the instant at which an object starts to
use a resource in mutual exclusion
- endresource - the end of such a resource usage phase
match {startresource| endresource}
of <ident> by <ident>
where the first identifier designates the object and the
second on the resource.

