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Abstract

Object-oriented modeling plays an increasing role in
the design of embedded controllers. Formal verification
can be applied in order to give evidence for meeting safety
critical requirements. The “Rhapsody UML Verification
Environment” supports verification of safety and liveness
requirements for embedded controllers, developed within
the Unified Modeling Language (UML). The verification
environment is integrated in the design tool “Rhapsody in
C++” offered by the company I-Logix.

This paper discusses how UML models are trans-
formed into a format usable for the VIS model checker,
shows the specification and verification on a simple ex-
ample and explains how the tool can be used to help deter-
mining the memory resources of a model.

1. Introduction

In recent years object-oriented techniques, as well
as model based development processes, have become
increasingly important for the design of embedded
systems. As a widely accepted standard, the Unified
Modeling Language (UML) has been established as a
formalism for object-oriented system design.

The application of high-level abstract specification
formalisms as offered by UML can itself be seen as an
improvement in the development of embedded systems.
Graphical formalisms, like class diagrams or state-
charts, increase intuitiveness of the design concept,
and simulation capabilities support the validation of
the system under development. In this context object-
oriented techniques help to formalize properties of the
system and its parts as well as to specify relations be-
tween its building ingredients.

Although object-oriented techniques can help to
avoid many conceptual problems and certain design

flaws, correctness of the design with respect to func-
tional requirements can not be guaranteed by con-
struction. Especially in the development of safety or
mission critical embedded systems, the application of
formal methods can massively improve the quality of
the design. Formal verification can be applied in order
to give evidence for meeting functional requirements.
Besides the ordinary problems as e.g. complexity of
the model, a verification environment for UML designs
has to cope with object-oriented techniques, such as
inheritance, dynamic association of objects, and cre-
ation/destruction of objects.

In this paper we report on a verification environ-
ment for UML models which has been developed in the
context of the European research project OMEGA1.
The tool set has been integrated within “Rhapsody in
C++” [7], a commercial design tool offered by the com-
pany I-Logix, and is based on the VIS (Verification
Interacting with Synthesis) model checker [8]. Require-
ments to be verified can be specified using predefined
temporal patterns or the graphical specification formal-
ism Life Sequence Charts (LSC) [5]. The LSC language
was developed to overcome the shortcomings of Mess-
age Sequence Charts and Sequence Diagrams which
both lack expressivity and a formal semantics [12].

The supported action language for modeling actions
and requirement specifications is a subset of the pro-
gramming language C++. This subset as well as a con-
crete semantics of the supported UML-subset has been
defined in OMEGA [4].

The interaction of the model with its environment is
restricted to event communication. In order to specify
the communication interface of the model the user has
to define a set of events as being external. These exter-
nal events are controlled by the model checker as inputs
for the model. In order to restrict the possible environ-
ment behavior with respect to this event communica-

1 IST-2001-33522 OMEGA, http://www-omega.imag.fr/



tion, the user of the verification environment can spec-
ify assumptions about possible event sequences pro-
vided by the environment using the specification tech-
niques listed above.

If the model checker detects a dynamic violation of a
requirement specification, an errorpath is issued show-
ing a concrete computation of the model violating the
requirement.

2. Tool Overview

For a better understanding of the subsequent sec-
tions, we give an overview of the verification environ-
ment first. Figure 1 shows an abstract view of some of
the tools and file formats and their interaction.

Rhapsody

XMI

smi2fsm

SMI

FSM CTL

PatEdit LSCEdit

VIS

Trace

STD LSC

Pattern LSC

Transform

pat2tl lsc2tl

trc2std trc2lsc

Figure 1. Structure of the verification environment.

A ‘ ’ symbolizes a tool, ‘ ’ a file format, ‘ ’

a flow of data, and the dashed lines seperate the four

levels “Input”, “Transformation”,“ModelChecking”,

and “Output”.

To be able to use the VIS model checker to verify re-
quirements on the UML model, both the model and the

specification have to be transformed into the input for-
mats of the model checker – that is, a finite state ma-
chine (FSM) description of the model and a computa-
tion tree logic (CTL) formula for the specification.

The left axis of figure 1 shows that the UML model,
which was designed within “Rhapsody in C++”, is
exported as an XMI [19] representation. This format
is the starting point for a multitude of transforma-
tion steps which finally lead to a representation of the
model in the SMI [1] language. SMI (System Modelling
Interface) has been developed at our department dur-
ing recent years and is a simple imperative language for
describing symbolic transition systems. SMI is trans-
lated into an FSM description in the VIS input syn-
tax. The right axis of figure 1 indicates that a tempo-
ral pattern definition as well as an LSC can be trans-
lated into an adequate CTL formula. Details of these
procedures can be found in [20] and [12].

Both the FSM and the CTL formula are then fed
into the VIS model checker, which either will state that
the formula is true, or will produce a trace showing a vi-
olating run of the system. This output talks about the
bit-level representation of the transformed model and
is thereby hardly readable for the designer. In order
to become comprehensible, the trace is backtranslated
into UML terminology so that model-constituents like
objects, associations, and event queues become visible
again. In some sense, the model transformations which
have been performed on the way down to the FSM de-
scription have to be reversed for the trace. Our tool
presents two aspects of the trace by using two differ-
ent visual formalisms. On the one hand, a symbolic
timing diagram (STD) [22] lists the changes of the ob-
jects’ attributes and statechart configurations. On the
other hand, the event communication between the ob-
jects of the model which led to the contradiction of the
specification is displayed as an LSC2.

We want to emphasize that the whole procedure is
completely integrated into “Rhapsody in C++”. The
user of the verification environment can build the UML
model, formalize the requirement, invoke the model-
transformation and -verification, and analyze the trace
without having to leave the Rhapsody toolkit. Techni-
cally we are using Rhapsody’s capabilities to instanti-
ate Makefile templates in order to call the underlying
tool chain.

The following sections describe some parts of the
verification environment in more detail. In section 3
we will show on a simple model how to perform a

2 here, the LSC is not meant as a specification language, but only
serves as a visualization tool for totally ordered message occur-
rences.



verification task and how to read the counterexam-
ple generated by the model checker. Speaking in terms
of figure 1, this section will talk about “Rhapsody”,
“LSC” as specification language, and the combination
of “STD” and “LSC” as errorpath visualization. Sec-
tion 4 describes how object creation and destruction as
well as dynamic addressing is represented for the model
checker, and proposes an iterative procedure to deter-
mine upper bounds for the memory consumption of
the model. The transformation of other object-oriented
concepts and UML constructs is sketched in Section 5.
These points correspond to the “Transform” part in fig-
ure 1.

3. The Verification Procedure

We use a small example of a vending machine model
to demonstrate the verification procedure.

VendingMachine

giveback_100():void
giveback_50():void

Changer

Prepare_Water():int
Prepare_Soft():int
Prepare_Tea():int
DWATER()
DTEA()
DSOFT()
FILLUP()

DrinkDispenser

fallthrough():void
update_ChoicePanel(
C50()
E1()
OK()

CoinValidator

Water_enabled : int
Soft_enabled : int
Tea_enabled : int

disable_all():void
enable_Water():void
enable_Soft():void
enable_Tea():void
WATER()
SOFT()
TEA()

ChoicePanel

1

1

1

1
1

1

Figure 2. The class diagram of the VM.

The VendingMachine (VM) sells drinks. Water at
the price of 50 cent, a softdrink at the price of 1 euro,
and tea at the price of 1.5 euro. As coins are inserted,
lamps on a choice panel signal the possible choice. Af-
ter pushing one of the enabled buttons, the correspond-
ing drink is prepared and dispensed, and the inserted
money is stored in the machine whereby change is given
to the customer if required. For reasons of simplicity,
the VendingMachine is not very sophisticated concern-
ing money handling, as it does not keep track whether
it has some change from previous buyings. It is for ex-
ample not possible to buy water if only a 1 euro coin
is inserted. Furthermore there is a “gambling compo-

nent”: the machine only signals if a particular drink is
in stock after the corresponding amount of money is in-
serted.

The machine can hold at most three drinks of each
kind, but it can be refilled by the external event
‘FILLUP’. This event then enables those drink lamps
for which an adequate amount of money was already
inserted into the machine.

An informal requirement on the VendingMachine
could be stated as follows: “Whenever a customerwants
to buy a water drink (thus, inserts at least one 50 cent
coin followed by pushing the water button) and the Vend-
ingMachine is not out of water drinks, then a water is
prepared and dispensed to the customer”. To see how
one can use the “Rhapsody UML Verification Environ-
ment” to check whether this requirement holds, we first
take a look at some parts of our UML model of the VM.
After that, we will formalize the requirement and show
how to interpret the results of the model checking pro-
cedure.

The VendingMachine is modeled as a composite
class with the four parts CoinValidator, ChoicePanel,
DrinkDispenser, and Changer (cf. fig. 2). All rolenames
of the depicted association links are constructed by
adding the prefix “its” to the target class name, i.e.
the CoinValidator knows the ChoicePanel under the
name “itsChoicePanel”.

Idle

waitOK

Entry Action:
itsChoicePanel
->enable_Water()

have_c50>

have_c150>

have_c100_or_e1>

have_e1

have_c100

E1/fallthrough()

C50/fallthrough()

E1/fallthrough()

E1/itsChoicePanel->enable_Soft()

C50

C50/itsChoicePanel
->enable_Water()

C50

C50 OKE1

Entry Action:
itsChoicePanel
->enable_Water()

Entry Action:
itsChoicePanel
->enable_Tea()

Entry Action:
itsChoicePanel
->enable_Soft()

Figure 3. The statechart of the CoinValidator.

The interaction with the customer, i.e. insertion of
money or choosing a drink, is modeled by the ex-
ternal events ‘C50’ (50 cent), ‘E1’ (1 euro), ‘WA-
TER’, ‘SOFT’, and ‘TEA’. The events of the DrinkDis-
penser whose names start with a ‘D’ model an internal
“dispense request”.



Figure 3 provides a closer look at the functionality
of the CoinValidator which is the most relevant part
of the model regarding the requirement stated above.
The statechart accepts coins, keeps track of the already
inserted money by entering the appropriate ‘have *’
state, and enables the lamps at the ChoicePanel by ac-
tions of the corresponding transitions and states. The
initial state is called ‘Idle’. After e.g. inserting a ‘C50’
coin, we enter the state ‘have c50’ and thereby call
the method ‘enable Water()’ of the ChoicePanel. This
method in turn checks whether the machine has a wa-
ter drink in stock and then enables the water lamp.
Inserting another ‘C50’ leads to the state ‘have c100’
which causes the softdrink lamp to be enabled if there
is a soft drink available, while the water lamp keeps its
status. If supernumerary coins are inserted, the method
‘fallthrough()’ is called to give back the money immedi-
ately. The DrinkDispenser signals a completed dispens-
ing by sending an ‘OK’ event which causes the state-
chart to return to the initial state.

ENVIRONMENT
VendingMachine
->itsCoinValidator

C50

DWATER

OK

WATER

VendingMachine
->itsChoicePanel

VendingMachine
->itsDrinkDispenser

!(VendingMachine->itsDrinkDispenser->IS_IN(Water_out))

Figure 4. The requirement as LSC.

Requirements of the model can be specified in terms
of predefined temporal patterns [20] (which cover a
wide range of typical questions like “reachability”,
“bounded response times” or “invariant properties”),
or as Life Sequence Charts (LSC) [5] which allow to ex-
press mandatory and possible behavior of the model in
a scenario based fashion. The formal semantics of the
LSC language is defined in [12], and is extended to the
UML domain in [11, 6].

The informal requirement on the VendingMachine
can be formulated in terms of an LSC as shown in fig-
ure 4. As graphically indicated, the LSC consists of two
parts, namely the pre-chart and the commitment. The
mode of the LSC was set to “universal”, i.e. in each run
and in each point in time of the run in which the pre-
chart is observed, the commitment must be observed

afterwards. Roughly spoken, the pre-chart serves as a
precondition which activates the LSC whenever a ‘C50’
followed by a ‘WATER’ is observed, with the addi-
tional constraint that the machine is not out of wa-
ter drinks on reception time of the ‘WATER’. Once ac-
tivated, the commitment of the LSC must hold. In our
example, this requires two internal events – this mod-
els the dispensing of the water drink – finally to oc-
cur.

As described in section 2, the verification environ-
ment takes both the UML model and the specifica-
tion as input and internally invokes the model checker
to verify the requirement. This procedure runs com-
pletely automatic. If the specification does not hold,
an errorpath is produced which shows one run of the
system which violates the specification.

Name: lsc_trace
Activation: -
Mode: INITIAL

Assumption: -
Pre-Chart: -

DrinkDispenser[1]ChoicePanel[1]CoinValidator[1]ENVIRONMENT

C50

C50

E1

WATER

WATER

WATER

WATER

FILLUP

. . . . . . . . . . . .

Figure 5. Suffix of the counterexample LSC.

Regarding our VendingMachine example, the LSC
specification does not hold. The produced errorpath
consists of 43 steps3 whereas the first 25 steps are driv-
ing the model into a situation where no more water
drinks are available. This prefix is not shown in the
following pictures. To understand the errorpath, it is
helpful to “replay” the suffix of the counterexample
LSC (cf. fig. 5) to the statechart of the CoinValida-
tor. We will thereby observe the system configurations
as shown in the suffix of the timing diagram in fig-
ure 6. Starting at the ‘Idle’ state and inserting the first
‘C50’ leads to the state ‘have c50’. This event also “ac-

3 but since it represents a violation of a liveness property, it is in
fact an infinite trace (as indicated by a looping section at the
end).



Figure 6. Suffix of the counterexample STD.

tivates” the pre-chart. Note that the water lamp is not
enabled since there is no water in stock. The next ‘C50’
leads to ‘have c100’. Now, the ‘E1’ forces us to take the
self-loop of the or-state ‘have c100 or e1’ which leads
to state ‘have e1’ by taking the default transition. Cru-
cial for recognizing the design error is the fact, that
the internal state of the CoinValidator has changed al-
though the euro coin itself has been directly given back
to the customer. The following ‘FILLUP’ enables the
buttons of the ChoicePanel depending on the informa-
tion about already inserted coins. But since the state-
chart of the CoinValidator now encodes the fact that
only a 1 euro coin was inserted, the water lamp is not
enabled due to this apparent lack of change.

The first ‘WATER’ event then “concludes” the pre-
chart (since in particular the machine is not out of wa-
ter on the reception time of this event due to the previ-
ous refilling). The following ‘WATER’s mark the loop-
ing section of the infinite errorpath4.

It is worthwhile noticing, that only this special in-
terleaving of coins and ‘FILLUP’ allows to detect the
design flaw. Additionally, the model checker had to dis-
cover that this sequence only leads to a violation if ap-
plied to a machine that is out of water. It is unlikely
that a typical set of test cases would have included this
combination.

4. Determining the Memory Model

In order to translate a UML model into a finite state
machine, it is necessary to find a finite representation

4 and are, by accident, emulating the “angry customer”, impa-
tiently hammering on the (albeit disabled) water button.

for the objects that can be created during runtime.
We require for each class in the model a global con-
stant which determines the maximum number of ob-
jects that can exist simultaneously.

The approximation of these constants is done by an-
alyzing the Inheritance relation as well as the multi-
plicities of the Aggregation relation. Once found, these
upper bounds can be used to create a so-called mem-
ory model. This memory model consists of a number
of memory places for each class. One memory place
can be seen as an object containing all user defined at-
tributes, necessary attributes to store the state config-
urations of a statechart, locally defined variables etc.
of a particular class. In addition to these data items
each memory place is also equipped with a flag, indi-
cating whether it is currently activated or not. Creat-
ing and destroying objects is represented by setting or
resetting this flag. Because creation of objects can be
done in µ-recursive structures, like while-loops in the
action language or loops within statecharts, determi-
nation of the memory model is not decidable.

To still help the user to find upper bounds for the
number of required memory places, an automatically
applicable optimization, based on model checking tech-
nology, is offered. An observer is introduced into the
model, to become able to detect if there is no more
memory place left to represent a new object. If a model
check run, requiring that this observer never becomes
true, fails, a new run is invoked with an increased up-
per bound of memory places for the class which causes
the fail. This process is repeated until a memory model
is found providing enough memory places, or, because
of the undecidable nature of this property, until a user
given maximal upper bound is exceeded.



If no memory model can be found, the user is pro-
vided a trace leading to the overflow. This trace might
still help the user to find a sufficient upper bound or
to detect the occurrence of something like an “object
pump” in the model. Since events are transformed into
classes, the technique described above is applicable for
events, too.

While object creation can be a source for unbound-
edness in the model, the event communication might
be another one. In UML the event communication is
an object to object communication buffered in a pos-
sible infinite event queue. We require models with fi-
nite event queues, and thus the designer has to define a
length for each. To help the designer to find the max-
imum length for an event queue, a similar technique
as described above is introduced. An observer is de-
fined into the model detecting queue overflows. Simi-
lar to the iteration process described above an itera-
tion of model check runs is performed until the suffi-
cient length is found or a user given upper bound is
reached.

In both cases, the same technique can be applied in
order to minimize the upper bounds of memory places
or event queue lengths. On the one hand, this optimized
memory model can be used as starting point to verify
user defined requirement specifications, on the other
hand information about required memory resources is
itself a valuable result, especially in the design of em-
bedded controllers.

5. Model Transformation

To be able to verify whether a requirement holds for
a given model, the model needs to be represented in
a format usable as input to the chosen model checker.
As already mentioned in section 2 we are using the
SMI language as an intermediate format. Thus, rather
than closing the entire gap between UML models and
the symbolic transition system representation we only
have to close that one between UML and SMI. To do so
we are transforming language concepts like event com-
munication, active objects, statecharts etc. into an ad-
equate imperative representation. The successive ap-
plication of the transformation steps listed below to-
gether with the computation and construction of the
memory model (cf. sec. 4) ends up in the desired rep-
resentation.

References or Association-Relation During the
transformation each memory place is assigned an
unique address. Using these addresses associations
are represented by normal class attributes storing
address values. A stored value represents an as-
sociation instance (link) between the object own-

ing the attribute and the object whose address is
stored in that attribute. The values can change
during runtime according to dynamic object in-
teraction.

Part-of- or Aggregation-Relation Aggregations
are represented by associations. Additional initial-
ization code is placed inside the constructors and
destructors. If an object is created or destroyed all
of its parts are created and destroyed properly.

Inheritance- or Generalization-Relation In or-
der to model the inheritance relationship for an
object of subclass CC to a superclass C, we are dis-
tributing the object into two objects: one object of
class CC and one object of class C. These objects are
linked together by an association instance. In ad-
dition, some modifications in the accessing mecha-
nisms of attributes and operations are introduced
representing the access to inherited items prop-
erly.

Operation or Method Operation calls are inline ex-
panded. In order to guarantee termination of the
substitution process we do not allow recursive op-
erations. Virtual operations are supported by in-
troducing dynamic addressing mechanisms which
are used for each call of a virtual function. This
mechanism is mainly based on the possibility to
find the most specialized class for a given object
during runtime. The memory model is enriched by
structures that allow to find this information.

Asynchronous communication via events We
follow the approach of Rhapsody’s “Object Execu-
tion Framework” [9] and represent the UML lan-
guage features event communication, event queues
and active objects by introducing a framework, as
depicted in figure 7. The shown classes define the
necessary attributes and methods to build the de-
sired functionality. In this framework there is for
example a class Reactive that has an operation
to receive an event. Each user defined class that
owns a statechart, like the CoinValidator class in
the VM model, has to inherit the class Reactive,
to be able to receive events. The establishing of
this inheritance relationship is done automatically
during the transformation process. Like Reactive

serves as the most common representation of ob-
jects which can receive events, the class Event

serves as the most common part for each user de-
fined event, like ‘C50’, ‘E1’ and ‘FILLUP’ in the
VM example.

Statechart To represent statecharts we use a sim-
ilar approach to the one of Rhapsody’s code



generation [9], with the main difference of pre-
serving nondeterminism of concurrent states
and outgoing transitions. Statecharts are trans-
formed into a set of attributes for storing the ac-
tual state configuration and some methods imple-
menting the behavior. Supported statechart con-
structs are: sub-statemachine, nested state, con-
current state, deep history-, choice-, fork-, join-,
stub-, and termination-connector.

Framework

+ReceiveEvent():Event

Reactive

+dequeue():Event
+enqueue(Event e):void

EventQueue

+setDestination(Reactive r):void
+getDestination():Reactive

Event

+Step():void
+EnqueueEvent(Event e):void

Active

QueueLength

itsReceiver

itsEventQueue

itsThread

Figure 7. Execution- and Event-Framework.

Active object An active object is an object that can
initiate activities. An activity is initiated by tak-
ing an event from the event queue and dispatch it
to the receiver object to trigger some transitions.
Therefore the transformation equips each user de-
fined active class with an inheritance relation to
the framework class Active, whereby it inherits
an event queue and the method ‘Step()’ (cf. fig. 7)
which is representing the initiation of activity.

Additionally, the transformation adds a sched-
uler object to each model that has more than one
active object. The scheduler determines the execu-
tion interleaving of all active objects in the model.
The scheduler can be influenced by the designer
with different values for the scheduling granular-
ity and the scheduling strategy. The scheduling
granularity can be set to statechart transition or
run to completion. The chosen value determines
which step notion should be used for the verifica-
tion task. A run to completion step is a step begin-
ning with a statechart transition triggered by an
event, followed by possibly infinitely many tran-
sient statechart transitions. A transient statechart
transition is a transition that does not have a trig-
ger and therefore can be taken without receiving a
new event. The scheduling strategy can be chosen

between “Round-Robin” as a fair one and “Non-
deterministic” as an unfair5 one. Other strategies
can be implemented easily as additional schedul-
ing methods of the scheduler class.

6. Tool Application

Our tool has been successfully applied to verify re-
quirements of industrial models in the context of the
two European research projects AIT-WOODDES6 and
OMEGA. For instance, an elementary model of a car
navigation system (NavSys) [24] was proven to give cor-
rect display feedback by verifying an invariant pattern
specification. Furthermore, a small but intricate bug in
a statechart design was detected during the verifica-
tion of an altitude measurement system called MARS

(Medium Altitude Reconnaissance System) [10]. Cur-
rently, we apply the “Rhapsody UML Verification En-
vironment” to an industrial case study SensorVoting
(SV) from the avionics area. In the following we give
an outline of this model and a verification result.

SV represents a voting and monitoring component of
a flight control computer. It implements control loops
to servo actuators by using data provided by sensors in
the air vehicle. Because SV is a safety critical compo-
nent, there exist three identical sensors for each kind of
sensor data. This triple redundancy enables the com-
ponent to be fault tolerant for several kinds of sensor
errors: A sensor value that deviates too much from the
other two sensor values is not taken into account for
the control output. A sensor is also not considered if
there were too many continuous fails in the past, even
if the current value seems to be correct.

The SV environment is built up as follows: An exter-
nal realtime clock component triggers the SV and the
sensor values are periodically acquired as input. The re-
sulting command value is determined by SV as an out-
put.

Inside the SV component, there are basically the fol-
lowing parts: The acquired sensor values are stored in
the Memory for the later voting and calculation. The
Voting part contains a vote functionality, which com-
pares the three sensor values pairwise with each other:
A sensor value is voted ok iff the distance to one of
the other two sensor values is not greater than a given
sensor tolerance δ, otherwise the sensor value is voted
fail. A second functionality compute calculates the av-
erage of all sensor values, which are voted ok and which

5 This strategy chooses nondeterministically the next active ob-
ject to be scheduled. In particular, it can produce unfair traces,
like starvation of active objects.

6 IST-1999-10069 AIT-WOODDES



are not marked hm-fail in the HealthMonitor part. The
HealthMonitor stores for each sensor information about
the sensor status in the current and previous cycles.
Three possible states about the healthiness are possi-
ble: A sensor is marked as

• hm-fail, if the corresponding sensor value is voted
fail for more than maxfail successive cycles, in-
cluding the current cycle (and in addition, if the
condition for hm-warn is not met, see below).

• hm-ok, initially or if the corresponding sensor
value is voted ok for more than maxok successive
cycles, including the current cycle.

• hm-warn, if the corresponding sensor value is voted
fail for more than maxwarn (not necessarily succes-
sive) cycles, including the current cycle.

Finally, three Monitors, one for each sensor, set the cor-
responding HealthMonitor-status according to the pre-
vious rules. The Monitors are triggered by ev-ok and
ev-fail events.

An SV-cycle basically comprises the following activ-
ities:

1. The sensor values are acquired and stored into the
Memory.

2. The sensor values are read from the Memory.

3. The read values are voted.

4. For each sensor, the event (ev-ok or ev-fail) which
corresponds to the vote, is sent to the sensors Mon-
itor.

5. The read values are used to compute the output
command value.

6. The ev-ok or ev-fail event is consumed in the Moni-
tor of each sensor. This procedure updates the sen-
sors’ status in the HealthMonitor.

A requirement to the SV-component is that at least
one “qualified” sensor value is “near” the calculated
output. To formalize this, we define S(t) to be the set
of all sensors at a given System state t, which do not
have the hm-fail status in the HealthMonitor and which
have been voted ok in the last vote before t. The re-
quirement is, that for every t between activity 5 and
6, S(t) is either empty, or there exist at least one sen-
sor value, which has a distance not greater than δ

2
to

the computed output command.
The application of our verification environment

shows that this property does not hold. In the gen-
erated counter-example, the sensor values v(s1),
v(s2) and v(s3) fulfill in the last cycle the inequa-
tions |v(s1) − v(s2)| ≤ δ, |v(s2) − v(s3)| ≤ δ, and
|v(s1) − v(s3)| > δ. Because of the first two inequa-
tions, v(s1), v(s2), and v(s3) are voted ok, but in the

previous maxfail cycles, the s2 sensor was voted fail, re-
sulting the HealthMonitor-status hm-fail in the last cy-
cle. Therefore, S(t) contains only s1 and s3, which
both have a distance greater than δ

2
to the com-

puted output command.

The result in the previous outline was not obvious
and has shown that the “Rhapsody UML Verification
Environment” is able to verify realistic safety require-
ments of nontrivial models.

Table 1 gives an impression of the size and the ver-
ification times of the mentioned case studies. We mea-
sured the time consumption of the VIS model checker
(the pure verification time, thus excluding prior UML
transformation phases) on an UltraSPARC-III proces-
sor with 900 MHz.

VM NavSys MARS SV

classes 5 6 5 11
objects 5 6 7 14
basic states 24 13 9 12
generalizations 0 0 0 2
compositions 4 6 5 2
aggregations 0 0 1 11
associations 6 14 4 7
statespace 147 266 319 396
running time 3 11 19 90

Table 1. Experimental results, listing the num-

ber of user-defined classes and run-time objects,

basic statechart states and relationships, the re-

sulting size of the model-statespace in bits and a

typical verification time in minutes.

7. Related Work

Early approaches to model checking based formal
verification of UML models actually only consider sin-
gle sub-languages of the UML, like state-charts [15, 14],
and effectively verify a single object in isolation.

The works of [16, 23, 21, 13] consider multiple ob-
jects but no dynamic creation and destruction of ob-
jects. [16] provides only a predefined set of checks of
invariants, e.g. absence of deadlocks, queue overflows,
and unreachability of invalid states. The specification
language of [23] is the temporal logic of the underlying
model checker, hence far from the level of UML. The
approach of [21, 13] is tailored to the use-case of “drive
to collaboration”, that is, it is checked for a given set
of objects whether the objects are able to adhere to a



communication sequence given by a collaboration dia-
gram. [13] takes timing annotations on state machine
transitions into account. This is, as long as time con-
straints are not considered, equivalent to the special
case of existential verification of LSCs that is also sup-
ported by the “Rhapsody UML Verification Environ-
ment”.

Graf et al. [17, 18] perform a verification of UML
models by extending an existing automata-based vali-
dation suite, called IF [2], to support concurrency and
communication aspects. All major UML constructs are
supported by their process. IF itself has connections to
explicit state model checkers, whereas in our approach
the usage of the VIS model checker works on a sym-
bolic representation. On the specification side they use
so-called UML observers that support constructs sim-
ilar to statecharts. In contrast, the LSC language can
be applied on a slightly higher level, without having to
think in terms of states and transitions but rather fo-
cus on the communication scenario.

Beside the work of Graf, that one of Fei Xie’s
model checking of xUML [25, 26] is closest to our ap-
proach. A rich set of UML language concepts and
features, like parallelism, inheritance, object cre-
ation/destruction etc. are supported by the xUML
approach. Nevertheless there are the following dif-
ferences to our approach. Their scheduling granu-
larity is set to “run-to-completion” and thus is not
able to detect errors occurring only in the possi-
bly more fine grained interleaving of statechart tran-
sitions. The used scheduling strategy in [25, 26] is re-
stricted to that one which nondeterministically
chooses the next object, rather than giving the de-
signer the possibility to define a scheduling strategy.
The used requirement specification language is re-
stricted to a set of temporal patterns and has no
graphical representation like LSCs have. The ap-
proach does not support parameters and hierarchies
of events. It seems to be the case that neither exter-
nal events nor assumptions about them are treated.
The concept of virtual operations is not handled.

8. Conclusion

We presented a verification environment that en-
ables the verification of UML models, thereby sup-
porting a rich set of static and dynamic aspects of
the model. Within the OMEGA project, our industrial
partners were able to verify safety and liveness require-
ments on their models [24, 10].

Our experiences with the SensorVoting case study
showed that verification times increase remark-
ably with the size of the model. Currently, we tackle

this so-called “state explosion problem” solely with
standard techniques [3] like a symbolic representa-
tion of the statespace and exact model reductions via
the cone-of-influence computation. Nevertheless, we
encountered verification times up to 12 hours for cer-
tain properties of the SV model, which brings up
the need to evaluate and integrate abstraction tech-
niques like [6] in order to treat larger models.

Besides these optimization efforts, we are going to
increase the number of supported UML features like
Packages, Components, etc. Furthermore, since the ver-
ification environment internally uses the standard ex-
change format XMI, our verification environment can
be adapted to other UML CASE tools if they provide
an XMI export of their models.
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