

D2.2.3 Final tool set for system verification
Annex 1. OMEGA syntax for users

OMEGA
Correct Development of Real Time Systems

Title : OMEGA syntax for users

Author(s) : Marcel Kyas, Joost Jacob, Ileana Ober, Iulian Ober, Angelika

Votintseva

Editor : Verimag

Date : 07/01/2005

Identifier : IST/33522/D2.2.3-A1

Document Version : 5

Status : Under work

Confidentiality : Restricted

Abstract : This document gathers all the notations defined in OMEGA. As

OMEGA is defined based on UML we do not describe here all UML
specific notations, instead we give the differences to the official
standard (reference version UML 1.4).
The introduction briefly describes how various notations fit together.

Note : This document is a minor update of the homonymous D2.2.2
Annex 1. It contains some minor syntax corrections.

OMEGA for users v5
January 2005

2

Document history

Revision Date Author Comments
1 08/07/2003 Ileana Ober Preliminary version containing skeleton + actions + extensions

described in XMI
2 16/07/2003 Ileana Ober

Marcel Kyas
Joost Jacob

Added time + OCL + Components

3 08/2003 Ileana Ober
Marcel Kyas
Joost Jacob
Angelika Votintseva

Add kernel language section

4 03/2004 Iulian Ober Updated OMEGA Action Language, added observers
5 10/2004 Iulian Ober Syntax corrections if timed extensions

OMEGA syntax for users

1 Introduction ... 5

1.1 INGREDIENTS FOR MAKING A MODEL OMEGA COMPLIANT ... 5
1.2 A NOTE ON TOOL USAGE .. 5

2 Kernel language... 5
2.1 UML 1.4 VERSUS OMEGA KERNEL LANGUAGE... 6

2.1.1 Structural Elements ... 6
2.1.2 Behavioural Elements.. 7

2.2 OMEGA WELLFORMEDNESS RULES ... 8
2.2.1 Classes and Associations... 8
2.2.2 Operations, Events and Attributes... 8
2.2.3 Statecharts ... 9

3 Action language... 9
3.1 PRINCIPLES... 9
3.2 RESTRICTIONS.. 9
3.3 OMAL SYNTAX ... 10

3.3.1 Lexical tokens .. 10
3.3.2 Grammar ... 11

3.4 SOME INFORMAL NOTES ON STATIC SEMANTICS.. 13
3.5 EXAMPLES.. 14
3.6 PLUGGING THE ACTIONS SPECIFICATION INTO UML MODELS... 14

3.6.1 Methods ... 14
3.6.2 Transitions... 14

4 Time extensions: Predefined data and object types... 15
1. TIMER ... 15

5 Time annotations syntax.. 15
2. EVENT TYPES.. 15

5.1.1 Event inheritance... 15
5.1.2 Syntax .. 15
5.1.3 Semantics ... 16

3. EVENT MATCHING STATEMENTS .. 16
A. INTERACTION EVENTS .. 16

 Invoke... 17

OMEGA for users v5
January 2005

3

 InvokeReturn .. 17
 Send.. 17
 ReceiveReturn, AcceptReturn... 18
 Receive, Accept .. 18
 ReceiveSignal, AcceptSignal.. 19

B. ACTION EVENTS.. 19
5.1.4 Start, End, StartEnd... 20

C. TRANSITION EVENTS .. 20
5.1.5 StartTransition, EndTransition, StartEndTransition ... 20
5.1.6 Enter, Exit.. 21

D. PRE EVENTS .. 21
5.1.7 Syntax and semantics... 21

4. CONSTRAINTS... 21
5.1.8 Duration between events ... 22

6 Property specification using UML observers .. 22
7 Component based design syntax ... 23
8 Syntax of OCL as supported in Simple UML ... 24

5. VOCABULARY... 24
8.1.1 Keywords ... 25
8.1.2 Reserved Identifiers ... 25
8.1.3 Basic Expressions .. 25
8.1.4 Standard Library ... 33

9 LSC.. 34
10 References .. 34

OMEGA for users v5
January 2005

4

1 Introduction
This document is intended to offer a first entry point for using the OMEGA kernel language and the OMEGA
extensions. It is not self contained as the semantics of the concepts newly added in OMEGA is NOT contained in
this document. Each chapter is an extract, focusing only on syntactic aspects, from a more complete
deliverable/milestone.

1.1 Ingredients for making a model OMEGA compliant
Compliance of a UML with the OMEGA model (and implicitly with the OMEGA tools) involves several
conditions, which are described in and correspond to the subsequent sections of this document. The main lines
are:

• Observing the kernel language restrictions/extensions (Section 2). These are restrictions/extensions over
the UML concepts (meta-classes) that are allowed in OMEGA models.
The syntactic restrictions are there mostly to ensure coherence and the possibility of efficient
verification for safety-critical models.
The syntactic extensions are designed to precise things relating to some UML concepts (e.g. specifically
saying if an Operation is Triggered or Primitive, as these have a special semantics defined in OMEGA).

• Using the OMEGA action language for describing the actions of a system. Actions are executed either
as the result of a statechart transition being taken by an object, or as the result of a primitive operation
being called on an object. The action language is designed to bridge the absence of a standard concrete
syntax for the UML actions.

• Using the OMEGA timed extensions, if the model requires them. These extensions are defined in terms
of standard UML extension mechanisms (stereotypes, tagged values) and interpreted comments, so that
they do not interfere with tools that are not aware of them.

• Using the component description syntax, if the model requires use of components.
• Observing the OMEGA restrictions/extensions for OCL expressions used in the model.
• Using compatible LCSs on the side of the OMEGA UML model.

1.2 A note on tool usage
In an ideal UML world, where all UML editors follow the UML standard to the letter, this document should be
sufficient in order for a user to be able to design OMEGA compliant models.
However, the two tools considered in the project, I-Logix Rhapsody and Rational Rose, do not support all
(neither the same) UML concepts (metaclasses and meta-attributes/associations). A simple example is the
isAbstract meta-attribute of UML classes, which is supported directly in Rhapsody and via a stereotype (Active)
by Rational Rose. Moreover, the link between the meta-information and the concrete means to edit it via the two
graphical editors is not always apparent to the user.
As a result of this state of facts, in order for the users to be able to edit OMEGA compliant UML models with
the two aforementioned editors, the OMEGA tool providers must provide additional guidelines as to where and
in which format information must be input. Such guidelines are partially present in this document, but they are
rather informal for the moment. They will be included in the final documentation of each OMEGA tool.

2 Kernel language
In this section we define the kernel language without time and component extensions. The Omega language is a
subset of UML 1.4 with a few tagged values needed for the strict formal semantics.
First, for type usage we will allow only classes (used as references to objects), enumeration, and such predefined
types as integer and boolean1. These types can be used in the constructor array, which must be bounded (static
arrays) and corresponds to MultiplicityRange in the UML Data Type package. In the Subsection 2.1 we define
the Omega kernel language specifying its divergence from the standard UML. Subsection 2.2 describes well-
formedness rules as additional restrictions on the usage of the syntactic elements from the kernel model.

1 Type string can be also used for uninterpreted actions or comments

OMEGA for users v5
January 2005

5

2.1 UML 1.4 versus Omega Kernel Language
Here we revise the core notions from UML w.r.t. the Omega kernel language, mentioning differences. Note that
we do not support any stereotypes defined in UML 1.4, besides those explicitly specified in the extensions of the
kernel model (for time and component specifications).

2.1.1 Structural Elements

2.1.1.1. Abstraction (inherits from Dependency relation): not supported.

2.1.1.2. Artefact is relevant only for the component extension, thus not considered here (besides model
itself).

2.1.1.3. Association: standard constraint xor and tagged value persistent are not considered.

2.1.1.4. AssociationClass: not supported.

2.1.1.5. AssociationEnd: the values of attributes aggregation, changeability, visibility, multiplicity, and
isNavigable are bound by the rules described in more details in Subsection 2.2.1. The value of attribute
targetScope is considered only as default value instance. The value package of attributes visibility is not
considered. Attribute qualifier can be only multiplicity (corresponding to the array index).

2.1.1.6. Attribute: no restrictions besides the visibility values: visibility package is not supported.

2.1.1.7. BehaviouralFeature: no special restriction.

2.1.1.8. Binding (inherits from Dependency relation): not supported, being a relation between a template
and a model element, since templates are not considered.

2.1.1.9. Class: we introduce additional attributes kind with values from {reactive, simple} and isCompRoot
with Boolean values in addition to the standard isActive, isRoot (w.r.t. inheritance) etc. These new
attributes can be represented as tagged values.

2.1.1.10. Classifier: the tagged value of attribute persistence is considered only as transitory.

2.1.1.11. Comment: no specific restrictions, since comments have no semantics.

2.1.1.12. Component: not relevant here.

2.1.1.13. Constraint: considered in Section 5.

2.1.1.14. DataType: only integer, Boolean, enumeration of literals and class identifiers are considered. To
define data type corresponding to arrays in programming languages, Multiplicity attribute can be used
with one MultiplicityRange. Strings can be used for comments or unintepreted actions.

2.1.1.15. Dependency: not supported.

2.1.1.16. ElementOwnership: not considered (being by default the whole model)

2.1.1.17. ElementResidence: is relevant only for the component model, thus, not considered here.

2.1.1.18. Enumeration & EnumerationLiteral: no restriction.

2.1.1.19. Feature: attribute ownerScope is considered with one value instance.

2.1.1.20. Flow: not supported.

2.1.1.21. GeneralisableElement: no restriction.

2.1.1.22. Generalisation: no powertype is considered.

2.1.1.23. Interface: is relevant only for the component model.

2.1.1.24. Method: the only legal actions in a method body are those specified in Section 3.

2.1.1.25. ModelElement: no templates and dependency relations are supported, so, no attributes related to
templates and dependency.

2.1.1.26. Namespase: no restriction.

2.1.1.27. Node: not relevant here.

OMEGA for users v5
January 2005

6

2.1.1.28. Operation: attribute isAbstract has only value false (abstract operations are not supported). We
introduce additional attribute isTriggered of Boolean type, to distinguish operations those rise call
events from those having associated method.

2.1.1.29. Parameter: attribute kind has value inout.

2.1.1.30. Permission (inherits from Dependency relation): not considered.

2.1.1.31. Primitive: UnlimitedInteger is not considered (can not be used for the verification).

2.1.1.32. ProgrammingLanguageDataType: not considered other than predefined (possibly with a range),
enumeration, and class definitions.

2.1.1.33. Relationship: only association (three kinds: composition, aggregation and the rest called for
convenience neighbour) and generalisation relation.

2.1.1.34. Stereotype: only those, described explicitly in the time- and component extensions of the Omega
kernel language are allowed (no other, in particular, user defined).

2.1.1.35. StructuralFeature: attributes and association ends are considered here (ports are described in the
specification of component model). The restrictions on the attribute values for association ends are
mentioned above. For attributes, changeability is considered equal to changeable, multiplicity is
considered equivalent to range to form arrays, targetScope is instance, persistence is transitory.

2.1.1.36. TemplateArgument and TemplateParameter: are not considered since templates are not
supported.

2.1.1.37. Usage (inherits from Dependency relation): not supported.

2.1.1.38. Expression: only expressions mentioned in Section 3 are allowed (as listed in <expression>).

2.1.1.39. Multiplicity: can consist only of one MultiplicityRange. Three kinds of multiplicity are
considered – fixed number (range [n,n] with n>0), unbounded multiplicity * (range [0,*]), or a range
[n,m] with m>n≥0.

2.1.1.40. Package: attribute importedElement is not supported.

2.1.2 Behavioural Elements
2.1.2.1. Action and ActionSequence: are defined in Section 4.
2.1.2.2. Argument: described in Section Erreur ! Source du renvoi introuvable. as

<opt_simple_expression_list>.
2.1.2.3. AttributeLink: no restrictions
2.1.2.4. Exception: syntactically not distinguished from signal event (should have higher priorities than

other signals).
2.1.2.5. Instance: attribute persistent has only value transitory.
2.1.2.6. Link and LinkEnd: attribute qualifierValue is not supported other than index value (since qualifier

is supported only for multiplicity, see item 5).
2.1.2.7. Object: no restriction.
2.1.2.8. Reception: attribute isAbstract is always false (abstract signals are not considered).
2.1.2.9. Signal: no restrictions.
2.1.2.10. Stimulus: no restrictions.
2.1.2.11. SubsystemInstance: is relevant only for the component model, not considered here.
2.1.2.12. Actor: no restrictions.
2.1.2.13. CallEvent: the corresponding triggered operation (rising the event) has attribute concurrency with

value guarded or sequential.
2.1.2.14. ChangeEvent: not supported.
2.1.2.15. CompositeState: no restriction.
2.1.2.16. Event: no restriction.
2.1.2.17. FinalState: no restriction.

OMEGA for users v5
January 2005

7

2.1.2.18. Guard: is a Boolean expression without side effects (possible syntax is described in Section 3).
2.1.2.19. Pseudostate: attribute kind has not value choice (a static variant of choice is a kind of junction

pseudostate)
2.1.2.20. SignalEvent: no restriction.
2.1.2.21. SimpleState: no restriction.
2.1.2.22. State: attributes doActivity and internalTransition are not supported (only explicit transitions are

allowed).
2.1.2.23. StateMachine: only one per class. A statemachine can be only attached to a class, port/interface or

component.
2.1.2.24. StateVertex: no restrictions.
2.1.2.25. StubState: not considered.
2.1.2.26. SubmachineState: not considered (no special semantics, used only for convenience).
2.1.2.27. SynchState: not considered.
2.1.2.28. TimeEvent: no restrictions, defined in more details in Section 6.
2.1.2.29. Transition: no restriction.

2.2 Omega Wellformedness Rules

2.2.1 Classes and Associations
2.2.1.1. There is the root class for every (component) model – the maximal class under composition and

aggregation relation, which is active2.
2.2.1.2. If an association (composition, aggregation or neighbour) relation has more than two association

ends, then one of them is called root-end (“starting point” of the association), and all others are called
end-points and must be navigable and visible. The root-end can be navigable and visible only in all the
corresponding end-points or in none of them.

2.2.1.3. The composition relation must define a directed acyclic graph.
2.2.1.4. For all composition relation, all its end-points ac_id.cj have the following properties:
• The value of attribute multiplicity is a fixed number (n>0) or unbounded (denoted as *)
• Attribute isNavigable has value true
• Attribute changeability has value frozen if its multiplicity is fixed (n>0) or addOnly if its multiplicity is

unbounded (*).
Attribute multiplicity of the root-end has value 1 and changeability is frozen.

2.2.1.5. For all aggregation relation, all its end-points have the following properties:
• The value of attribute multiplicity is a fixed number (n>0), unbounded (*) or range [m,n], where m,

n>0.
• Attribute isNavigable has value true

Attribute multiplicity of the root-end has value 1 and changeability is frozen.
2.2.1.6. For other associations (neighbour):
• All end-points as well as the root-end have the value of attribute multiplicity as a fixed number (n>0),

unbounded (*) or range [m,n], where m, n>0.
2.2.1.7. No sharing of weak components (end-points of aggregation relations) between several weak

composites (root-ends of aggregation relations) in run-time.

2.2.2 Operations, Events and Attributes
2.2.2.1. Only the following kinds of stimuli are considered: signal event emissions, operation calls,

timeouts, object creation and destruction (special kinds of operation calls). Signal events have public
visibility.

2.2.2.2. There are two special kinds of primitive operations: constructor and destructor, which can be
defined via a tagged value isSpecial of type enumeration (constructor, destructor, none), because the
presence of these operations is restricted by the inter-object relations (see item 2.2.2.8).

2.2.2.3. No naming conflicts of operations, attributes, classes and associations names – e.g., in multiple
inheritance.

2 UML 1.4 defines a root only for the generalisation relation (attribute isRoot), but we also need such notion for
the composition and aggregation for the semantic reason (and the definition of the initial configuration).

OMEGA for users v5
January 2005

8

2.2.2.4. There is no invocations of triggered operations in the bodies of primitive operations.
2.2.2.5. A dependency graph of operation calls is tree-like (without recursions).
2.2.2.6. Triggered operations are guarded or sequential.
2.2.2.7. Primitive operations are sequential or free of side effects (attribute isQuery is true).
2.2.2.8. For all classes c, operations for object creation and destruction (primitive operations with the

corresponding tagged values) of c can be invoked from a class c´ iff there is aggregation or composition
association directed from c´ (association root) to c.

2.2.2.9. Each object has (additional to standard) link my_ac to an active object, which is derived from the
structure of inter-object relations (via composition). Thus, each active object with all its associated
passive objects form a so called activity group. For the safety reasons, we restrict the model behaviour
so, that an object may call an operation only from an object of the same activity group.

The syntax of the Omega actions is defined formally in Section 4. Here are some restrictions on their usage
within method bodies.

2.2.2.10. No variable or constant declaration within operation bodies (all declarations should be specified at
the level of class definition, i.e. as attributes with the desired visibility).

2.2.2.11. Restricted set of primitive actions and constructs (with syntax described in Section 3):
• Object creation
• Object destruction
• Assignment of an expression to an object attribute
• Assignments of attributes/navigation expressions to attributes/navigation expressions
• Operation call
• Setting return value
• Signal emission

We allow sequential composition, “if-then-else” conditional composition and FOR- and WHILE-loops.
2.2.2.12. For all navigation expression in the form a0.a1…..an (n ≥ 0):

• all references a0,…, an-1 are association role names (can be default names self)
2.2.2.13. For all n ≥ 0 and assignments of a value to a navigation expression (e.g. a0.a1…..an := value) we

require that an is a basic or navigation attribute, meaning that its type is a predefined type or it is an
association end.

2.2.3 Statecharts
2.2.3.1. Every statechart must have a distinguished top state which is of mode OR.
2.2.3.2. The priorities of transitions rise from outmost to innermost source state, meaning that a transition

originating from a substate has higher priority than a conflicting transition originating from any of its
containing states.

2.2.3.3. If a class inherits from several classes, then only one of the generalised classes has statechart or
generalised classes have equal statecharts. If a new statechart is specified in a specialised class, then it
completely overwrites any statechart from its generalised class, i.e. the delegation of signal and call
events (to the definition of their reception in another class) is not supported.

3 Action language
The syntax elements in this section are taken and adapted from milestone [M221].

3.1 Principles
OMAL is an imperative language conforming to the UML1.4 Action Semantics. The language contains only a
minimal set of features, to simplify definition and compilation. For homogeneity and ease of use, we use a subset
of OCL as expression language for OMAL.

3.2 Restrictions3
Notes concerning the current version of OMAL:

• We distinguish syntactically between expressions containing calls or object creation (call_expression,
create_expression) and expressions containing only navigation and operators of predefined types
(simple_expression).

3 These restrictions might be too strong for end-users in an industrial setting, and an industrialized version of OMAL should
alleviate them.

OMEGA for users v5
January 2005

9

It is allowed to make an operation call (for model or collection operations) on the result of a navigation,
but it is not allowed to further navigate from the result of a call (otherwise than by storing the result of
the call explicitly in an attribute).
This is in order to simplify compilation: expressions with nested calls / object creation may require
temporary variables for storing intermediate results during evaluation, which are avoided in our setting.

• We only use a limited subset of OCL, especially in what concerns collection expressions. Currently, we
suppose all collections are of type Sequence, and we consider the following operations:

o getAt(i : Integer) – get the i’th member of the collection
o setAt(i : Integer, object : OclAny) – set the i'th member of the collection to point to object
o isEmpty(), notEmpty(), and size() – with the usual OCL meaning

Another restriction concerns navigation with collections: we distinguish syntactically between
expressions containing calls or object creation (call_expression, create_expression) and expressions
containing only navigation and operators of predefined types (simple_expression).
This is in order to simplify compilation: expressions with nested calls / object creation may require
temporary variables for storing intermediate results during evaluation, which are avoided in our setting.

3.3 OMAL Syntax
This section contains the lexical and syntactic rules defining OMAL.

3.3.1 Lexical tokens

3.3.1.1 Character set
The action language uses a character set corresponding to the 7 bit ASCII character set. Character encoding
(ASCII, UNICODE or other encodings) is left open to tools as long as the character set remains as specified
above.
In the following, we denote characters and character sequences between apostrophes (‘’). For designating
characters we use the usual symbols or the C escape sequences (for non-printable characters).

3.3.1.2 White spaces
White spaces are defined as: space (‘ ‘), tab (‘\t’) or new line (‘\n’ or ‘\r’).
White spaces may appear between any two tokens in an action specification and are ignored.

3.3.1.3 Comments
There are two forms of comments:
‘/*text*/’ where text is any character sequence not containing the subsequence ‘*/’.
‘//text’ where text is any character sequence containing exactly one new line (‘\n’ or ‘\r’) at the end of
the sequence.
‘--text’ where text is any character sequence containing exactly one new line (‘\n’ or ‘\r’) at the end of
the sequence.
Comments may appear between any two tokens in an action specification and are ignored.

3.3.1.4 Identifiers4
An identifier is an unlimited-length sequence of letters and digits, the first of which must be a letter. Identifiers
are denoted in the grammar by the token IDENTIFIER, defined by the following regular expression:
IDENTIFIER ::= NONDIGIT (NONDIGIT + DIGIT)*

NONDIGIT ::= '_' + 'A' + ... + 'Z' + 'a' + ... + 'z'

DIGIT ::= '0' + '1' + ... + '9'

3.3.1.5 Keywords
The following character sequences are reserved for use as keywords and cannot be used as identifiers.
BEGIN ::= ‘begin’

CHOOSE ::= ‘choose’

4 From this point on, each lexical definition must be read as follows:

- at the left side of ‘::=’ we write the token name by which the token is identified in the grammar
- at the right side of ‘::=’ we write the character sequence / regular expression defining the token.

OMEGA for users v5
January 2005

10

COBEGIN ::= ‘cobegin’

COEND ::= ‘coend’

DO ::= ‘do’

ELSE ::= ‘else’

END ::= ‘end’

ENDCHOOSE ::= ‘endchoose’

ENDIF ::= ‘endif’

ENDWHILE ::= ‘endwhile’

IF ::= ‘if’

INFORMAL ::= ‘informal’

NEW ::= ‘new’

REPLY ::= ‘reply’

RETURN ::= ‘return’

SELF ::= ‘self’

THEN ::= ‘then’

WHILE ::= ‘while’
The following character sequences are reserved for use as keywords in future versions of OMAL and cannot be
used as identifiers.
LEADSTO ::= ‘leadsto’

3.3.1.6 Literals
The following character sequences are reserved for use as literals denoting values of predefined types.

- Boolean literals:
FALSE ::= ‘false’

TRUE ::= ‘true’

- Time literals:
NOW ::= ‘now’

- Integer literals:
INTEGER_LIT ::= DIGIT (DIGIT)*

- Real literals:
REAL_LIT ::= DIGIT (DIGIT)* ‘.’ DIGIT (DIGIT)*

- Object reference literals:
NULL ::= ‘null’

- String literals:
STRING_LIT ::= ‘"text"’

Where text is any character sequence containing neither new lines (‘\n’ or ‘\r’) nor ‘”’.

3.3.1.7 Symbols and other tokens
The following character sequences are tokens to which we do not give names. They are used as such in the
grammar:
‘:’ ‘:=‘ ‘,’ ‘::’ ‘.’ ‘(‘ ‘)’ ‘;’ ‘!’ ‘and’ ‘or’ ‘not’ ‘=‘
‘<>‘ ‘->‘ ‘::’ ‘+’ ‘-‘ ‘*’ ‘/’ ‘%’

3.3.2 Grammar

3.3.2.1 Meta-language
For defining the grammar of OMAL, we use a simple form of EBNF.
- Non-terminals are identified by strings in slanted style, such as action.

OMEGA for users v5
January 2005

11

- Tokens are identified either through their name (in uppercase, like INTEGER_LIT) or through
the precise character sequence defining them (between ‘’, like ‘:=’).

- On the right-hand side of a production :
• The empty token/nonterminal sequence is denoted by ε.
• Round parentheses () are used to group token/nonterminal sequences
• Optional parts are written between []
• Repetitive parts formed of 0 or plus occurrences of α are written as (α)*
• Alternative between α and β are written as α | β

3.3.2.2 Production rules5

3.3.2.2.1 Actions

action ::= [IDENTIFIER ‘:’]6
 (elementary_action | control_action | composite_action |
 nondet_choice_action | interleaving _action)

elementary_action ::= ε
| assignment_action
| call_action
| send_action
| return_action
| reply_action
| informal_action

assignment_action ::= navigation_expression ‘:=’ expression

call_action ::= call_expression

send_action ::= navigation_expression ‘!’ signal_name
 ‘(’ [simple_expression (‘,’ simple_expression)*] ‘)’

return_action ::= RETURN simple_expression

reply_action ::= REPLY operation_name ‘(‘ simple_expression ‘)’

informal_action ::= INFORMAL STRING_LIT

control_action ::= IF expression THEN action (‘;’ action)* ENDIF
| IF expression THEN action (‘;’ action)*
 ELSE action (‘;’ action)* ENDIF
| WHILE expression DO action (‘;’ action)* ENDWHILE

composite_action ::= BEGIN action (‘;’ action)* END

nondet_choice_action ::= CHOOSE action (‘|’ action)* ENDCHOOSE

interleaving_action ::= COBEGIN action (‘|’ action)* COEND

3.3.2.2.2 Expressions

expression ::= call_expression

5 The grammar in this form is ambiguous and is neither LL(∞) nor LR(∞). Tool providers may transform it in the form that is
suitable for their compiler technology, provided the language does not get changed.
6 This is to give names to actions. Named actions are needed in the timed part

OMEGA for users v5
January 2005

12

| create_expression
| simple_expression

call_expression ::= navigation_expression '.'
 [classifer_name ‘::’] operation_name
 '(' [simple_expression (‘,’ simple_expression)*] ')'

create_expression ::= NEW classifier_name [‘::’ operation_name]
 '(' [simple_expression (‘,’ simple_expression)*] ')'

simple_expression ::= [simple_expression ‘or’] and_expression

and_expression ::= [and_expression ‘and’] relational_expression

relational_expression ::= [relational_expression (‘<’ | ‘<=’ | ‘=’ | ‘>=’ | ‘>’ | ‘<>’)]
 add_expression

add_expression ::= [add_expression (‘+’ | ‘-’)] mult_expression

mult_expression ::= [mult_expression (‘*’ | ‘/’)] unary_expression

unary_expression ::= [(‘-’ | ‘not’)] primary_expression

primary_expression ::= literal
| navigation_expression
| ‘(‘ simple_expression ‘)’

literal ::= FALSE | TRUE | NOW | INTEGER_LIT | REAL_LIT | NULL

navigation_expression ::= (
 SELF |
 parameter_name |
 attribute_name |
 association_end_name |
 reception_name
)
 (‘.’ (attribute_name | association_end_name))*
 [
 ‘->’ collection_oper_name
 ‘(' [simple_expression (‘,’ simple_expression)*] ')'
]

signal_name ::= IDENTIFIER

operation_name ::= IDENTIFIER

classifier_name ::= IDENTIFIER

parameter_name ::= IDENTIFIER

attribute_name ::= IDENTIFIER

association_end_name ::= IDENTIFIER

reception_name ::= IDENTIFIER

collection_oper_name ::= IDENTIFIER

3.4 Some informal notes on static semantics
OMAL is statically type checked. Type conformance is based on strict equality for predefined types (no default
conversion is defined). Type conformance for object types is defined in the usual way based on the UML class
hierarchy defined by the model in which OMAL actions are used.

OMEGA for users v5
January 2005

13

3.5 Examples
This section contains some action examples:

• An example of composite action (from class EAP from the OMEGA EADS case study) with
assignment, operation call, signal sending:

begin

 current_is_ok:=EVBO.Close();

 Cyclics!Anomaly()

end
• An example from VERIMAG’s BitCounter example:

begin

 if (next <> null) then

 self.result :=next.get();

 result:=2*result

 endif;

 if (value) then

 result:=result+1

 endif;

 return result

end

3.6 Plugging the actions specification into UML models
Although in the context of the UML metamodel it is quite clear where the actions come into the picture of a
UML model, things get more complicated if the concern is tool interoperability. This is basically because various
tools, use different nodes in the abstract tree for storing the actions.

Basically there are two places actions may occur in a model specification: in the body of a method (when
describing the behaviour corresponding to the operation) and on a state machine transition. We have looked at
the two commercial UML tools considered in OMEGA to see how exactly actions can be specified in a UML
model and how they are saved in the generated XMI file.

3.6.1 Methods
Rational Rose does not generate Method objects, but only Operations. In OMEGA models, the method body has
to be placed in the Operation->Semantics text field. This text field is exported as the Operation.specification
item in XMI.

Rhapsody seems does generate Method objects. In OMEGA models, the method body has to be placed in the
Operation->Implementation text field. This text field is exported as the Method.body.body item in XMI. (Note:
Method.body yields a ProcedureExpression object, Method.body.body yields a String containing the text of the
Operation->Implementation field).

Both Rose and Rhapsody provide a field called documentation for Operations. This could provide the possibility
to distinguish concrete and abstract action specifications which may be useful in the context of validation.
However, for the moment we have not explored this possibility yet.

3.6.2 Transitions
In general, in OMEGA UML models we consider that

• Transition effect is a single action, as defined by the OMAL non-terminal action.
• Transition guard is a simple expression, as defined by the OMAL non-terminal simple_expression.

In Rational Rose:

• The effect may be defined in the Action text field (NOTE : a single text line), which can
be found in XMI in the following location: Transition.effect.action->getFirst().name.

• The guard may be defined in the Guard text box, which will put it in XMI in
Transition.guard.expression.body.

OMEGA for users v5
January 2005

14

In Rhapsody :

• The effect may be defined in the Action text field, which can be found in XMI in the
following location: Transition.effect.script.body.

The guard may be defined in the Guard text box, which will put it in XMI in Transition.guard.expression.body.

4 Time extensions: Predefined data and object types
The syntax elements in this section are taken from deliverable [D113].
The following data types are defined in a UML package OMEGAPredefined. This package has to be included at
the root level in every UML model that uses these types.
The definition of this package is available in Rational Rose and Rhapsody format. It contains several additional
data types, which are ignored by the tools.

1. Timer
The predefined object type Timer gives simple means to observe and use time passage in behavior description.
The following operations are currently defined on timers:

- set (<duration>) – where <duration> is an integer value. It sets the expiry time of the timer within
<duration> time units.

- reset() – It puts the timer in an inactive state
When a timer is active and the expiry time is reached, a timeout event is generated. This event may be specified
as trigger to a statemachine transition, using the syntax:
 timeout(<timer variable>)
It is not specified whether the timeout event is sent as a signal or observed by other means, nor whether it is
broadcast or sent to a uniquely defined object.

Note that, in this way, any object that has a navigation path to the timer variable may call all operation and may
observe the timeout.

5 Time annotations syntax
The syntax elements in this section are taken from deliverable [D113].

2. Event types
An event type is a special kind of object type defined by the following components:

• a set of attributes (data or object references, as for any object type)
• an update statement, which is automatically executed by the timed analysis runtime at specific

moments defined below. The purpose of this statement is to update the attributes of the event object
with some observed data. The update statement is composed of the following:

o an event matching statement which will identify the moments when the update statement is
executed, by linking them to some other actions performed in the system. The event matching
statement gives:

 the event kind, which is one of the following: Invoke, InvokeReturn, Send, …
 additional meta-data relative to the event (operation name, etc)
 a rule for storing data related to the event (which depends on the event kind, and may

be for example the sending object, receiving object, etc.) into event attributes.
o a condition which establishes when the event is considered to be triggered (updated)
o a statement which is executed is the condition is true, and which is used to store additional

data from the model, for later use.

5.1.1 Event inheritance
For the convenience of writing event types, they can be inherited. The event inheritance has the semantics of
inheriting attributes. The update statement definition is completely lost during inheritance.

5.1.2 Syntax
A Class with the stereotype <<TimedEvent>> defines an event type in the UML model.

OMEGA for users v5
January 2005

15

The attributes of the event are given as the attributes of that class.
There may not be any operation defined in the event class.
There may not be any structural relationships (inheritance, associations) defined for the event class.
The update statement is attached as a note to the classifier. Its syntax is :
<EventUpdateStatement> ::=
 match <EventMatchingStatement>
 [when <SimpleExpression (from action language)>]
 [do <Action (from action language)>]
< EventMatchingStatement > ::=
 <InvokeStatement> | <InvokeReturnStatement> |<SendStatement>

| <ReceiveStatement> | <AcceptStatement> | <ReceivereturnStatement> | <AcceptreturnStatement> |
| <ReceivesignalStatement> | <AcceptsignalStatement>
| <StartStatement> | <EndStatement> | <StartendStatement> | <StarttransitionStatement>
| <EndtransitionStatement> | <StartendtransitionStatement>
| <StartStateStatement> | <EndStateStatement> | <StartendStateStatement> | <ChangeEventStatement>

.
<SimpleExpression (from action language)> and <Action (from action language)> are interpreted in the name
context of the event class (i.e. may navigate via the event attributes).

5.1.3 Semantics
Variables having as type an event type may be declared either globally for the UML model or locally in a class.
The syntax for declaring such variables is described in Section 4. If global, such a variable will point to a unique
event object. If local to a class, such a variable points to a different event object for each instance of the class.
Wherever such variables are allowed to be used (e.g. in the condition attached to a time constraint), they are used
like references to normal objects (i.e. may be the starting point of navigations).
Declaring an event variable to be global or local may change the way it is updated:

• global event objects are updated whenever a matching behavior occurs anywhere in the system.
• local event objects are updated only when a matching action is performed or may be directly observed

by the object to which they are attached. The meaning of “performed” or “directly observed” is defined
for each event kind in the following.

3. Event matching statements
The following event matching statements may be used for specifying the update of an event object.
An event object may be specified in a local scope (a class) only when it matches an action that can be initiated or
directly observed by the instances of the class. (Example: an invoke event may be specified in the class whose
objects are invoking the operation, but not in the invoked operation or its enclosing class.) Thus, for each event
kind, we specify which are the objects that initiate or directly observe the corresponding action.
Note: for the definition of the syntax, some frequent non-terminals are defined here:
<ModelElement> ::= <Identifier>
<QualifiedModelElement> ::= [<QualifiedModelElement> ‘::’] <ModelElement>
<NumericComparison> ::= ‘<’ | ‘<=’ | ‘>=’ | ‘>’ | ‘=’ | ‘<>’
<NumericLiteral> ::= …

A. Interaction events
In this category we place the events relative to operation invocation or signal exchange. There are two kinds of
interaction events:

1. Events initiated by the execution of an action, and which are observable by the same object that
executed the action. This category comprises: invoke, invokereturn, send.

2. Events which are a consequence of a causal chain, which are not observable by the object that initiated
the causal chain but which are observable by another object in the system. This category comprises:
receive, accept, receivereturn, acceptreturn, receivesignal, acceptsignal.

The above distinction is necessary because, as mentioned before, an event specification placed in a local scope
(Class) refers only to the events, of corresponding type/attributes, which are observed by the local object /
operation activation.

OMEGA for users v5
January 2005

16

 Invoke
An invoke event specification matches the instants when a call request for a specific operation is emitted.

5.1.3.1 Syntax
<InvokeStatement> ::=
invoke <Operation> (<NavigationExpressionList>)
 [by <NavigationExpression (from action language)>]
 [on <NavigationExpression (from action language)>]
where:

• <Operation> ::= <QualifiedModelElement> - designates an Operation.
• <NavigationExpressionList> ::=

| (<NavigationExpression (from action language)> | void)
 (‘,’ (<NavigationExpression (from action language)> | void))*

5.1.3.2 Locality
In a local scope, an <InvokeStatement> matches invocations performed by the local object on other objects.

5.1.3.3 Static semantics
Type checks:

• The number and types of the expressions appearing in the parameter list after the <Operation> must
match the number and types of the formal parameters of the designated Operation.

• void matches any type and designates no store location.

 InvokeReturn
An invokereturn event specification matches the instants when the return to an invocation of an operation is
sent by the callee.

5.1.3.4 Syntax and semantics
<InvokeReturnStatement> ::=
invokereturn <Operation> ([<NavigationExpression (from action language)>])
 [by <NavigationExpression (from action language)>]
 [from <NavigationExpression (from action language)>]

where:

• <Operation> ::= <QualifiedModelElement> - designates an Operation.
Semantics:

• An invokereturn event specification in a class C matches the sending of a return to an invocation for
one of the operations of the class. An invokereturn event specification in an operation op matches the
handling of an invocation for op.

5.1.3.5 Locality
In a local scope, an <InvokeReturnStatement> matches the return from a local operation call initiated by an other
object.

5.1.3.6 Static semantics
Type checks:

• The optional expression appearing in the parantheses the <Operation> must match the types of the
return parameter of the designated Operation.

• void matches any type and designates no store location.

 Send
A send event specification matches the instants when a specific signal is emitted.

OMEGA for users v5
January 2005

17

5.1.3.7 Syntax and semantics
<SendStatement> ::=
send <Signal> (<NavigationExpressionList>)
 [by <NavigationExpression (from action language)>]
 [to <NavigationExpression (from action language)>]

where:

• <Signal> ::= <QualifiedModelElement> - designates a Signal.
• <NavigationExpressionList> is defined as in Section 5.1.3.1

5.1.3.8 Locality
In a local scope, a <SendStatement> matches a signal sent out by the local object to some other objects.

5.1.3.9 Static semantics
Type checks:

• The number and types of the expressions appearing in the parameter list after the <Signal> must match
the number and types of the formal parameters of the designated Signal.

• void matches any type and designates no store location.

 ReceiveReturn, AcceptReturn
A receivereturn event specification matches the instants when a return to a call request for a specific operation
is received by the caller.
An acceptreturn event specification matches the instants when a return to a call request for a specific operation
is handled by the caller.

5.1.3.10 Syntax and semantics
<ReceiveReturnStatement> ::=
receivereturn <Operation> ([<NavigationExpression (from action language)>])
 [by <NavigationExpression (from action language)>]
 [from <NavigationExpression (from action language)>]

<AcceptReturnStatement> ::=
acceptreturn <Operation> ([<NavigationExpression (from action language)>])
 [by <NavigationExpression (from action language)>]
 [from <NavigationExpression (from action language)>]

where:

• <Operation> ::= <QualifiedModelElement> - designates an Operation.

5.1.3.11 Locality
In a local scope, a <ReceiveReturnStatement> or <AcceptReturnStatement> matches the return from an
operation call initiated by the local object on other objects.

5.1.3.12 Static semantics
Type checks:

• The optional expression appearing in the parantheses the <Operation> must match the types of the
return parameter of the designated Operation.

• void matches any type and designates no store location.

 Receive, Accept
A receive event specification matches the instants when an invocation of an operation is received by the callee.
An accept event specification matches the instants when an invocation of an operation is handled by the callee.

5.1.3.13 Syntax and semantics
<ReceiveStatement> ::=

OMEGA for users v5
January 2005

18

receive<Operation> (<NavigationExpressionList>)
 [by <NavigationExpression (from action language)>]
 [from <NavigationExpression (from action language)>]

<AcceptStatement> ::=
accept <Operation> (<NavigationExpressionList>)
 [by <NavigationExpression (from action language)>]
 [from <NavigationExpression (from action language)>]

where:

• <Operation> ::= <QualifiedModelElement> - designates an Operation.
• <NavigationExpressionList> is defined as in Section 5.1.3.1

5.1.3.14 Locality
In a local scope, a <ReceiveStatement> or <AcceptStatement> matches the reception of an operation call to a
local operation initiated by other object.

5.1.3.15 Static semantics
Type checks:

• The number and types of the expressions appearing in the parameter list after the <Operation> must
match the number and types of the formal parameters of the designated Operation.

• void matches any type and designates no store location.

 ReceiveSignal, AcceptSignal
A receivesignal event specification matches the instants when a signal is received by its destination.
An acceptsignal event specification matches the instants a signal is handled by its destination.

5.1.3.16 Syntax and semantics
<ReceiveSignalStatement> ::=
receivesignal<Signal> (<NavigationExpressionList>)
 [by <NavigationExpression (from action language)>]
 [from <NavigationExpression (from action language)>]

<AcceptSignalStatement> ::=
acceptsignal <Signal> (<NavigationExpressionList>)
 [by <NavigationExpression (from action language)>]
 [from <NavigationExpression (from action language)>]
where:

• <Signal> ::= <QualifiedModelElement> - designates an Signal.
• <NavigationExpressionList> is defined as in Section 5.1.3.1

5.1.3.17 Locality
In a local scope, a <ReceiveSignalStatement> or <AcceptSignalStatement> matches the reception of a signal by
the local context sent out by other object.

5.1.3.18 Static semantics
Type checks:

• The number and types of the expressions appearing in the parameter list after the <Signal> must match
the number and types of the formal parameters of the designated Signal.

• void matches any type and designates no store location.

B. Action events
The action events must be specified either globally or locally in a Class or Operation. If local, they refer to an
action executed by the Class’ state machine or by the concerned operation.

OMEGA for users v5
January 2005

19

5.1.4 Start, End, StartEnd
A start event specification matches the instants when a specific action starts executing.
A end event specification matches the instants when a specific action ends executing.
A startend event specification matches the instants when a specific atomic action starts executing.

5.1.4.1 Syntax and semantics
<StartStatement> ::=
start <Class> ‘@’ <label > [by <NavigationExpression (from action language)>]

<EndStatement> ::=
end <Class> ‘@’ <label > [by <NavigationExpression (from action language)>]

<StartStatement> ::=
startend <Class> ‘@’ <label > [by <NavigationExpression (from action language)>]

where:

• <Class> ::= <QualifiedModelElement> - designates the class containing the action
• <label> ::= <Identifier> - designates the action label
• <NavigationExpressionList> is defined as in Section 5.1.3.1

5.1.4.2 Locality
In a local scope, a <StartStatement>, <EndStatement> or <StartEndStatement> match the reach of an action
(start or end) by the local context.

5.1.4.3 Static semantics
Type checks:

• The action should be contained in the object specified in the by clause

C. Transition events

5.1.5 StartTransition, EndTransition, StartEndTransition
A starttransition event specification matches the instants when a specific transition starts executing.
A endtransition event specification matches the instants when a specific transition ends executing.
A startendtransition event specification matches the instants when a specific atomic transition starts executing.

5.1.5.1 Syntax and semantics
<StartTransition Statement> ::=
starttransition <Class> ‘@’ <TransitionName> [by <NavigationExpression (from action language)>]

<EndTransition Statement> ::=
endtransition <Class> ‘@’ < TransitionName> [by <NavigationExpression (from action language)>]

<StartEndTransition Statement> ::=
startendtransition <Class> ‘@’ < TransitionName> [by <NavigationExpression (from action language)>]

where:

• <TransitionName> ::= <Identifier> - designates a transition name.
• <NavigationExpressionList> is defined as in Section 5.1.3.1

5.1.5.2 Locality
In a local scope, a <StartTransition>, <EndTransition> or <StartEndTransition> match the start /end of a
transition execution by the local context.

5.1.5.3 Static semantics
Type checks:

OMEGA for users v5
January 2005

20

• The transition should be contained in the object state machine (or in some of its operation state
machines) specified in the by clause

5.1.6 Enter, Exit
An enter event specification matches the instants when a specific state is entered.
An exit event specification matches the instants when a specific state is exit.

5.1.6.1 Syntax and semantics
<StartStateStatement> ::=
enter <Class> ‘@’ < StateName> [by <NavigationExpression (from action language)>]

<EndStateStatement> ::=
exit <Class> ‘@’ < StateName> [by <NavigationExpression (from action language)>]

<StartEndStateStatement> ::=
startendstate <Class> ‘@’ < StateName> [by <NavigationExpression (from action language)>]

where:

• <StateName> ::= <Identifier> - designates a state name.
• <NavigationExpressionList> is defined as in Section 5.1.3.1

5.1.6.2 Locality

In a local scope, a <StartState>, <EndState> or <StartEndState> match the reach of a state entry/exit by the local
context.

5.1.6.3 Static semantics
Type checks:

• The state should be contained in the object state machine (or in some of its operation state machines)
specified in the by clause

D. Pre events
In this cathegory we place the « pre » events declarations. While all event definitions until now allow to identify
the last occurrence of the event, the pre events allow us to identify events that happened in the past.

5.1.7 Syntax and semantics
<PreEventUpdateStatement> ::= (pre)* <EventUpdateStatement>

The number of pre keywords in the pre event declaration indicate how many events up to the last are we
interested in: a single pre corresponds to the event occurrence previous to the one currently identified, a pre pre
event declaration corresponds to a event occurrence second previous to the current one. Pre event declarations
can only be identified when it’s reference event occurs, this means that the actions that may exist in the event
update statement are executed not when the event was detected as pre (i.e. not now), but at pre’s reference
occurrence time, i.e. when the event originally occurred (two event occurrences before).

4. Constraints
Timed constraints are considered as predicates that have to hold at certain points in time (usally, at the time of
occurrence of a certain event).
Note: The scope of the event specifications used in a constraint is the scope of the constraint itself. Therefore, a
constraint may be attached to a local element only if it refers only to locally observable events. Global
constraints are attached to the <<TimeConstraint>> stereotyped class present in the model (and added to

OMEGA for users v5
January 2005

21

5.1.8 Duration between events
A duration between two events, ev1 and ev2, measures the time passed between the last occurrence of the first
events and the very next occurrence of ev2. If no ev2 occurred after the last occurrence of ev1, then we consider
the previous occurrence of ev1, and so on.
If no ev1 occurred, then the duration between ev1 and ev2 is undefined (no matter if ev2 occurred or not).
The following components are important for a duration:

- the two events
- a filter condition (other than the filter conditions that may be present in the event type declarations) that

applies only to this duration

Syntax and semantics
<BasicTimedConstraint> ::=

<BasicTimeDuration><NumericComparison> <NumericLiteral>

<BasicTimeDuration> ::=
 <BasicDuration> |<PipelineDuration>

< BasicDuration > ::=

duration ‘(‘<Event attribute> ‘,’ <Event attribute> ‘)’ when <DurationCondition>

<PipelineDuration>::= TBD
where:

- <Event attribute> ::= <Identifier> - designates an event attribute defined in the same scope as the
constraint.

- <DurationCondition> ::= <SimpleExpression (from action language)> - interpreted in the scope
enclosing the constraint

The two <Event attribute>s cannot be accessed by navigation.
- The <DurationCondition> serves at filtering the events on which the duration can be established

Semantics:
• <BasicTimedConstraint > constrains the duration between an event matching the second event

specification, and the most recent event matching the first event specification.
• This constraint has to hold only upon the occurrence of the second event, if an event matching the first

specification precedes it.

6 Property specification using UML observers
UML observers are the automata-based property specification mechanism used by the Verimag tool. From the
syntactic point of view, observers re-use much of the existing concepts of UML and of the aforementioned time
extensions, and introduce only some minimal extensions in the form of UML stereotypes.
Thus, an observer is specified in the UML model by a class stereotyped with <<Observer>>. The automaton
defining the observer property is the UML state machine of that class.
The state machine may react either to simple (state-based) conditions in the model, or to events. The event types
to which an observer may react are the same as the ones defined in the section 5. Thus, the transition triggers of
an observers may include event matching statements, defined in section 5 by the production associated to the
<EventMatchingStatement> non-terminal.
In order to obtain a property specification, the user has to classify some states of the observer as error or success.
Syntactically, this is done by stereotyping the states with <<Error>> or with <<Success>>.
The model checking tools will search for executions of the system leading the observer to error or success states.
This mechanism allows specifying arbitrarily complex state- or event-based (and possibly timed) safety
properties.
An example of observer is shown in Figure 1 for the following property taken from the NLR case study: if the
DatabusController becomes not operational for over 10ms, then eventually within these 10m the
MessageReceiver will be in ControllerError state.

OMEGA for users v5
January 2005

22

prop1

<<Observer>>

OMEGAPredefined::TimeConstructs::Timer

t

1

nominal
DCerr

Prop1VIOLATION

<<Error>>

/match enter MessageReceiver @ ControllerError // t.reset

/match enter DatabusController @ Error // t.set(10)

/timeout(t)//

Figure 1. Observer for timed property of NLR case study

Further details on observers may be found in [OGO03].

7 Component based design syntax
The CASE tools Rhapsody and Rational Rose do not support components, yet. As a workaround, a component
based design can be done within the Kernel Model Language by means of substitution: Class for Component,
rolenames of realization or dependency relations for Ports. A user can draw classes and interfaces in Rhapsody
and use a naming convention to make clear that this is a component diagram and not a class diagram.

Figure 2 displays a component diagram and how it can be represented as a class diagram. The association role
names can be used to capture component port names and their role (required or provided).

Iclient_prov

Client
Component

Server
Component

Iserver_req

Iserver_provIclient_req

Iclient_provClient ServerIserver_req

Iserver_provIclient_req

Component Diagram

Class diagram

IClient

IServer

Figure 2 Component

OMEGA for users v5
January 2005

23

Figure 3 displays how multiple interfaces can be associated with one port on a component: by means of the
"myport" role.

myport

 MyComponent

MyComponent

Component Diagram

Class diagram

IProv1

MyProvided1

MyProvided2

IProv2

myport

myport

UML interface

UML class

Figure 3

Note that there can be no statemachines associated with components, yet, because the OMEGA action language
does not support components yet. For example a return statement would have to be extended with a parameter
indicating which object inside a component it should go to. However, this way a user can create a hierarchical
set of diagrams and this set can then be used by the OMEGA tools. Because of the hierarchical structure it will
then be possible to verify properties on a high level in the design, without the need for a complete design.

A big disadvantage of the "substitution" approach is that this loses information like "what classes are associated
with a port" if classes can not have classes inside. We rely on the user to organize a correct hierarchy. Also
there are problems like when you want to add 2 Ports with identical interfaces to a component. These kind of
problems can be solved, but the result will look hackish and ugly. A better approach is to use SUML extended
with suitable elements for component based designs. This has no loss of information and links the component
diagrams and their underlying class diagrams together. An example is in the OMEGA component report. The
extended SUML DTD for components is also in the component report. Of course the CASE tools do not support
SUML output but a SUML encoding is so simple that it can be produced with a text editor. If and when the
CASE tools do support components then we can built a SUML2XMI tool just like the XMI2SUML tool we
already built for the UML2PVS project.

8 Syntax of OCL as supported in Simple UML
This section describes the syntax and semantics of OCL as supported by our Simple UML library. The Simple
UML library is part of our tool, and is responsible for parsing and type checking OCL files.

This document is part of the Simple UML library's manual.

5. Vocabulary
In the current draft of the OCL 2.0 proposal it is not clear what constitutes a keyword, which identifiers are
reserved, and which identifiers may be defined by the user. In this section we explain the choices we have made.

OMEGA for users v5
January 2005

24

8.1.1 Keywords
Keywords in OCL are reserved words. That means that a keyword cannot occur anywhere in an OCL expression
as the name of a classifier, a property, or a package. The keywords are:
 and
 body
 context
 def
 derive
 else
 endif
 endpackage
 if
 implies
 in
 init
 inv
 let
 not
 or
 package
 post
 pre
 then
 xor

 Additionally we treat the identifiers `false' and `true' as keywords.

 If the Simple UML library is working in _ASO/OCL_-mode the following strings become keywords:
`interface' and `local'.

8.1.2 Reserved Identifiers
In addition to the keywords other identifiers are _reserved_ by the Simple UML library. Depending on their
context these identifiers have a special meaning, which the user cannot override by redefining them in
his model.
 We advise the user to treat the reserved identifiers as keywords. If he intends to use them for other purposes in
his model, he has to make sure, that his use of the keyword is consistent with the meaning it has
in an OCL constraint.
 In the following paragraphs we describe those special identifiers:

 In a post condition the identifier `result' is a variable of the same type as the operation which is to be
constrained. The variable holds the return-value of the operation. We advise a user to use the following ideom
in his code, if he needs to use `result' as an identifier.

 The identifier `result' can safely be used as a local variable. If it is used as such, then the action associated to
the operation has to return the value of `result' by using the action `return result'.

 The identifier should not be used as a parameter name, because `result@pre' is confusing.

8.1.3 Basic Expressions
OCL is a strongly typed expression language.

Literals
Literals are the most simple kind of expressions in OCL. In OCL you have `Boolean', `Integer', `Real', `String',
and `Collection' literals (We do not yet support tuple literals).

Boolean Literals

OMEGA for users v5
January 2005

25

The `Boolean' literals are `true' and `false'. Alternatively, you can write `Boolean::true' and `Boolean::false',
because UML 2.0 defines `Boolean' as an enumeration type with two values.
 true
 false
 Boolean::true
 Boolean::false

Integer Literals
Any sequence of digits is considered to be an `Integer' literal in OCL.

The only representation of integers in OCL 2.0 is decimal. This library also supports binary, octal, and
hexadecimal integer literals. As in the C programming language, an octal integer literal is prefixed
with a single `0' (null), and an hexadecimal integer literal is prefixed with a `0x' or `0X'. Binary literals are
prefixed by a `0b' or `0B'.

 0 -- Integer literal
 11 -- Integer literal in decimal.
 011 -- Integer literal in octal (9 decimal)
 0x11 -- Integer literal in hexadecimal (17 decimal)
 0b11 -- Integer literal in binary (3 decimal)

 Note: There are no negative integer literals. These are represented by an unary expression.

Real Literals
Real literals are sequences of digits using the same notation as in C. Equivalent ways of expressing 1% are:
 0.01
 1e-2
 1E-2

String Literals
String literals are enclosed in single quotation marks `''. Characters can be escaped using the C-style backslash
`\'. String literals must not contain a new line character. This character may be represented by `\n'. The
operation `+' of class `String' allows string concatenation.

 '' -- The empty string
 '\'' -- A single quote as string
 'String'
 '\n' -- A newline character

Collection Literals
The most complex kind of literals are collection literals. A collection literal is formed by the type of the
collection, followed by an opening brace (`{'), followed by the contents of the collection, which is a comma-
seperated list of expressions, and ends in a closing brace (`}'). The collection types are `Bag', `Set', and
`Sequence', with its super-type `Collection'.

 Set{ 1, 2, 3, 4, 5 }

 You may use two consecutive dots to define ranges of integers in an collection literal.

 Set{ 1..5 } -- same as Set{ 1, 2, 3, 4, 5 }
 Set{ 1..3, 5..6 } -- same as Set{ 1, 2, 3, 5, 6 }

 The lower and upper bound of an range expression may be an arbitrary expression. If the first value of the
range expression if larger than the second one, the expression is considered empty.

 Set{ a..b } -- Empty, if a > b

 The rules for deriving a type for collection literals are quite complex. The kind of the collection is defined by
the literal, while the type of the elements of a collection have to be deduced by the type checker:

OMEGA for users v5
January 2005

26

 Set{ 1.0, 2 } -- Set(Real)

 In general it is not possible to determine a unique type for the elements of a collection literal. The current
implementation of the type checker will chose an arbitrary type. This may result in false type errors. To avoid
this problem, you have to explicitely cast the elements of the collection literal:

 Set{ a->oclAsType(A), b->oclAsType(A) } -- Set(A)

 This work-around does not work, if the elements of a collection are collections. In any case you have to re-
type the elements which are derived from `OclAny'.

 If the collection literal is empty (`Set{}'), the type of the elements is assumed to be `OclAny'. To create an
empty collection of another type, you need to create a non-empty collection first, and remove its elements:

 Set{ 1 }->reject(true) -- Empty Set(Integer)

 While syntactically possible, we don't suggest using the collection type `Collection' for writing collection
literals, except for the literal `Collection{ }'.

Property Calls
The second important ingredient of OCL is the property call. The property call represents the access to all
variables, navigations, and operation calls.

Local Variables
The most simple form of a property call is an identifier, which is used to access a local variable or a property of
the enclosing classifier is used:

 name

 If no local variable of the name `variable' is defined, then the value of an attribute (or association) of the
classifier, in which this expression is defined, is used, instead.
 If no attribute or association of this name is defined, then an operation without formal parameters will be
called.

 name()

 In this example, the call of an operation is forced by providing an empty argument list.

 self.name

 This example avoids the use of an local variable, but will use a property defined in the classifier.

 As in other object-oriented programming languages you can chain these property calls:
 name1.name2.name3

 Note, that OCL, and UML, only use the concept of a property, a variable, and a literal. The number two can be
written as:
 1.+(1)
 1.+(2).-(1)
 1.+(2).+(1.-)
 1.+(2).-(1.-.-)
 This way of writing expressions is a bit obfuscating.

Operation Calls
Some operations are treated specially by the Simple UML library, either because it is currently not possible to
define their signature in Simple UML or because those operations have certain semantic commitments.

 The infix notation of equality (`=') is not the same as the corresponding operation of the standard library or a
user's model. We assume that infix equality is _strong equality_, and it will always return a valid Boolean value.

OMEGA for users v5
January 2005

27

If the user wants to define his own equality operation, and he wants to use it, he has to write `a.=(b)' instead of `a
= b' (mind the dot and the parnethesis).

 The operations `oclIsTypeOf', `oclIsKindOf', `oclInState', and `oclAsType' are not defined in the standard
library. Their argument or return types are special and you cannot define their signature in our Simple UML
format. All operations require a valid expression as an argument, but `oclIsTypeOf', `oclIsKindOf', and
`oclAsType' require a type as their argument and `oclInState' requires the state name of a state machine. You
cannot reliably override these operations.

Unary Prefix Operators
The two operation calls `-' and `not' may be written in pre-fix notation:
 - 1 -- same as 1.-()
 not true -- same as 1.not() or 1.not

Binary Infix Operators
The following operation calls may be written in infix notation:
 a = b -- equality, same as a.=(b)
 a <> b -- inequality, same as a.<>(b)
 a <= b -- same as a.<=(b)
 a >= b -- same as a.>=(b)
 a < b -- same as a.<(b)
 a > b -- same as a.>(b)
 a and b -- same as a.and(b)
 a or b -- same as a.or(b)
 a implies b -- same as a.implies(b)
 a xor b -- same as a.xor(b)
 a + b -- same as a.+(b)
 a - b -- same as a.-(b)
 a * b -- same as a.*(b)
 a / b -- same as a./(b)
 a div b -- same as a.div(b)
 a mod b -- same as a.mod(b)

Collections and Property Calls
The interaction of collections and property calls is, at first sight, a bit unusual. The property call is applied to the
elements of a collection, and not the collection itself. The following constraint is true:

 Set{ 1, 2, 3 } + 1 = Set{ 2, 3, 4 }

 Associations with a multiplicity other than `0..1' or `1' will always return an appropriate collection.

• If the association is unordered, and an object may be associated at most once, then the collection is
`Set'.

• If the association is unordered, and an object may be associated more than once, then the collection is

`Bag'.

• If the association is ordered then the collection is `Sequence'.

Conditional Expressions
OCL provides one conditional expression:
 if a then b else c endif

 The meaning of this expression is, that if `a' evaluates to `true', then the value of the expression is `b',
otherwise it is `c'.

Collection Calls
We have described the interaction between property calls and collections in the preceeding section. In this
section we explain how to access the properties of a collection itself.

OMEGA for users v5
January 2005

28

 Recall, that the dot (`.') is the operator to call properties of objects. The operator to call properties of
collections is an "arrow" (`->').

 One property of a collection is its size, the number of members a collection has. The following example
illustrates the difference between `.' and `->'.

 Set{ Set{ }, Set{ 1 }, Set{ 1, 2 } }.size = Set{ 0, 1, 2 }
 Set{ Set{ }, Set{ 1 }, Set{ 1, 2 } }->size = 3

 The following properties of collections behave like key-words in the context of a collection call:
 collect
 exists
 forAll
 iterate
 reject
 select
 You cannot override these operations on collections. (Actually, you should not extend any of the OCL
collection types). These properties are used to write iteration calls, projection expressions, and
quantified expressions.

Iterate Expressions
OCL uses a special kind of collection calls for loops, projection, and quantification. These expressions are
called iterate expression. We study an example of an iterate expression:
 Set{ 1, 2, 3, 4 }->iterate(i; y: Integer = 0 | y + x)
 Iterate expressions look very much like collection calls, but their arguments differ.

 The first part in front of the semi-colon (`i') of the argument declares an iterator variable which ranges over
the elements of the collection.

 The second part, between the semi-colon and the bar declares an accumulator variable. The type of the
accumulator value defines the type of the iterate expression (in this example the type is `Integer').

 The third and final part, after the bar, is an update expression. The type of the expression has to be the
compatible with the type of the accumulator expression. This expression defines a new value for the
accumulator variable.

 This example computes the sum of the elements in the set.

 The example can be written as follows using a Java-like programming language.
 Set s = new Set({ 1, 2, 3, 4 })
 Iterator i;
 int y = 0;
 for (i = s.iterator(); i.hasNext(); i.next())
 y = y + i.get();

Projection Expressions
OCL provides operations which allow you to define sub-collections using projection operations. These
operations are similar to iterate expressions.

 OCL defines three such operations:
`select'
 This operation is used to select all elements of a collection which satisfy a property defined in the argument
of the expression.

`reject'
 This operation is used to select all elements of a collection which do not satisfy a property defined in the
argument of the expression.

`collect'

OMEGA for users v5
January 2005

29

 This operation is not really a projection, but it works similar enough to the other operations.

 The following examples illustrate the syntax of a projection expression:
 Set{ 1, 2, 3, 4 }->select(x | x > 2) = Set{ 3, 4 }
 Set{ 1, 2, 3, 4 }->reject(x | x > 2) = Set{ 1, 2 }

 As the iterate expression, this expression uses an iteration variable. However, it is not allowed to define an
accumulator variable for projection expressions. The iteration variable works very much like a lambda-
abstraction in functional programming languages. The type of the iteration variable is the one of the element
types.

 Optionally, the iteration variable may be omitted, if the expression is a property of the elements of the
collection. The following example shows the previous two examples with the iteration variable omitted.
 Set{ 1, 2, 3, 4 }->select(>(2)) = Set{ 3, 4 }
 Set{ 1, 2, 3, 4 }->reject(>(2)) = Set{ 1, 2 }

 We suggest to always write an iterator variable, because it helps reading the expression.
 Set{ 1, 2, 3, 4 }->select(x | 1 < x and x < 4) = Set{ 2, 3 }
 Set{ 1, 2, 3, 4 }->select(>(1) and <(4)) = Set{ 2, 3 }

 The expression following the bar must be of type boolean.

 The `reject' property is the negation of the `select' property. For any collection `c' and boolean expression `e',
we have
 c->select{ e } = c->reject{ not e }

Quantified Expression
OCL provides quantified expressions, which are very similar to collection expressions. The quantifiers are
`forAll' and `exists'. The syntax is similar to the projection expressions.

 s->forAll(x | x > 0)
 s->exists(x | x < 0)

 Though not recommended, the same abbreviations used for projection expressions may be used for quantified
expressions.

 s->forAll(>(0))

 The type of the expression must be boolean.

Multiple Iterator Variables
It is possible to define more than one iterator variable in the different iterator expressions. In this case, the
iterator variables iterate over all possible tuples of the collection:

 s->forAll(x, y | x.name = y.name implies x = y)

 This constraint may also be written by:
 s->forAll(x | s->forAll(y | x.name = y.name implies x = 0))

Properties of Types
Each class provides a collection of properties.

All Instances
One property of a type is `allInstances'. This operation results in the set of all instances of this class, which exist
in a particular state. For example, to state that all persons in a state have a different name, we can specify:

 context Person inv:
 Person.allInstances()->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

OMEGA for users v5
January 2005

30

 If `allInstances' is applied to possibly infinite types, then all values of this type are returned. The set of all
`Integers' is written as `Integer.allInstances()'.

States of a State Machine
If a class defines a state machine, then this class defines an enumeration type which lists all the states of the state
machine. A state `S1' of a state machine in class `C' is called `C::S1'. A sub-state `T1' of `S1' is then called
`C::S1::T1'.

Let Expressions
You can define name and functions within a constraint using let-expressions. The name you define with this
expression will be substituted by its value in the expression the name is bound. `let x = 5 in y > x' is identical to
`y > 5'.

 This feature is useful for abbreviating more complex expressions and to define functions:
 let even(x: Integer) = x mod 2 = 0 in even(y) or not even(y)

 A type must be defined for each declared parameter declare (even if OCL allows you to omit this). Usually,
the type checker will figure out the type of the value you define, but you may declare one:
 let even(x: Integer): Boolean = x mod 2 = 0
 in even(y) or not even(y)

 The expression you define may even be recursive. In this case you have to declare a type for the expression.
 let even(x: Integer): Boolean =
 if x = 0
 then true
 else if x < 0
 then false
 else even(x - 2)
 endif
 endif
 in even(y) or not even(y)

 Multiple identifiers may be declared by writing a comma-separated list:
 let x = 1,
 y = 1
 in x = y

 This allows the definition of mutually recursive functions:
 let even1(x: Integer): Boolean =
 if x > 0 then even1(x - 2) else even2(x) endif,
 even2(x: Integer): Boolean =
 if x = 0 then true else false endif,
 even(x: Integer) = even1(x)
 in even(y) or not even(y)

 You should not use recursive and mutually recursive functions, because they are hard to understand and even
harder to reason about.

Defining Constraints and Contexts
Here we describe how you write a file of OCL constraints. Each constraint must be associated to a context, and
a stereotype has to be given, such that it can be interpreted.

Package Context
The OCL package context is not yet supported. A package context is declared by a `package declaration'.
 package P
 -- Constraints go here
 endpackage

 A sub-package is declared using a path-name.
 package P::Q::R

OMEGA for users v5
January 2005

31

 -- Constraints go here
 endpackage

 You may not nest package declarations. All constraints in a package declaration use the classifiers from the
package it is defined in.

Classifier Context
The classifier context is used to define constraints and definitions which have the classifier as their scope. For a
class named `C' the classifier context is declared by
 context C
 -- constraints

 A contraint must have at least one stereotype. It may have a name.
The stereotypes and name are defined by a list of identifiers, followed by a colon. The classifier context may
only contain a definition, using the `def' stereotype, and an invariant, using the `inv' stereotype.
 context C
 inv: true
 def: x = true

 This defines the trivial invariant `true' for classifier `C' and defines the identifier `x' to be `true'. The definition
stereotype has similar semantics as the `let'-definition.

 The default identifier for the object itself is `self'. If preferred, you can redefine it:
 context this: C
 inv: this <> this.next

Operation Context
To define a pre- and post-condition for an operation the operation context is used. Within this context you may
use the `pre' stereotype to define a pre-condition and the `post' stereotype to define a post-condition.

 context C::op(x: Integer, y: Integer): Integer
 pre: true
 post: true

 The signature given in the operation context must be identical to the declaration in the class diagram, including
the names and types of the parameters.

Attribute and Association Context
Constraints may be attached to attributes and associations. The allowed stereotypes are `inv', `init' to specify an
initial value for the attribute or association, and `derive' to define a derivation rule for the attribute or association,
if it is a derived one.

 context C::attr: Integer
 inv: attr > 0
 init: 1

 context C::assoc
 inv: assoc->size > 0 and assoc->size < 5
 derive: other->select(x | x.prop)

Other Stereotypes
Other stereotypes may be defined for any context. They must precede the main stereotype already described.
These stereotypes are

`local'
 This stereotype marks the expression as a local expression. It essentially prohibits general navigation
expressions and unbounded quantification (using allInstances)

`interface'
 This stereotype restricts the constraints to the history of an object.

OMEGA for users v5
January 2005

32

`time'
 This stereotype restricts the constraint to time-expressions on events.

Components
Currently, support for components is not implemented. Instead, we treat components like classes and use the
class context for component specifications.

8.1.4 Standard Library
A large part of OCL as implemented by the Simple UML library is defined in a standard library. The standard
library is provided as a SUML model. It defines the types and the supported operations of each elementary type
of OCL.
 When a diagram is initialised for processing by the Simple UML library, it is merged with the standard library,
such that all standard operations of OCL are available in the class diagram.
 This way of implementing the standard signature of the data types imposes some restrictions on the models
which the Simple UML library accepts, and which definitions may cause trouble.
 The Simple UML library currently requires that in each class diagram all the used types are defined. This is
also true for the standard types. So the standard types have to be defined in each class diagram. An empty
definition is sufficient.

 All test cases distributed with this library contain the following definitions in the SUML format:
 <CLASS name="Boolean"/>
 <CLASS name="Integer"/>
 <CLASS name="Real"/>
 <CLASS name="String"/>

 These allow the modeller to use those elementary types in his model. The merging procedure will provide all
missing attributes and operations.
 The standard library provides all operations and features defined in the OCL 2.0 document. This document
can be downloaded at <http://www.klasse.nl/ocl/subm-draft.html>. Additionally, we provide new definitions for
events and histories, which are available to model behavioural constraints.

Events
An event is represented by the class `AsoEvent', and has the following members:

`sender'
 The object which has sent the event.

`receiver'
 The object which has received the event.

`kind'
 An enumeration value describing the kind of the event. This may be one of `signal' or `operation'.

`message'
 The message which belongs to this event. For a signal it is only one message, namely the event itself. For an
operation call we have two messages, namely the invocation of the operation and a message sending the return
value back. The message is described below in more detail.

`state'
 This describes the state of the message and characterizes the event. It may be one of `send', `receive',
`accept', or `reject' for a signal and one of `send', `receive', `accept', `sendReturn', `receiveReturn', or
`acceptReturn' for operations.

`time'
 The global time at which the event was sent.

 A message has the following properties:
`name'

OMEGA for users v5
January 2005

33

 A string defining the name of the operation or signal.

`parameters'
 A sequence defining the actual parameters which have been sent to the operation.

`returnValue'
 If the state of the event is one of `sendReturn', `receiveReturn', or `acceptReturn', then this attribute is the
value sent back by the operation. Otherwise this value is undefined.

Histories
Standard library defines two variables in `OclAny'
`localHistory'
 The local history of events sent and received by an object. It is of type `Sequence(AsoEvent)'.

`globalHistory'
 The global history of events sent and received by any object in the system. It is of type
`Sequence(AsoEvent)'

 A local history is related to a global history through the following property:
 context OclAny inv:
 localHistory = globalHistory->select(e |
 (e.sender = self or e.receiver) = self and e.sender <> e.receiver)

 This means that a local history of an object contains all events sent or received by itself, but it does not contain
any event which it does not have sent or received.

 We are working on extending the standard library with functions which provide templates for specifying usual
scenarios.

9 LSC
See Annex 4: LSC Play-Engine user’s guide.

10 References

[D113] The OMEGA consortium. Timed Extensions and Component Model, Final version. OMEGA project

deliverable D1.1.3, 2003
[D222] The OMEGA consortium. Tool set for system verification. OMEGA project deliverable

D2.2.2, 2003
[M221] The OMEGA consortium. Definition of the tool exchange format. OMEGA project milestone

M2.2.1, 2003
[OGO03] Iulian Ober, Susanne Graf and Ileana Ober. Validating timed UML models by simulation and

verification. In SVERTS’03, Workshop on Specification and Validation of UML models for Real
Time and Embedded Systems. San-Francisco, October 2003.

OMEGA for users v5
January 2005

34

	Introduction
	Ingredients for making a model OMEGA compliant
	A note on tool usage

	Kernel language
	UML 1.4 versus Omega Kernel Language
	Structural Elements
	Behavioural Elements

	Omega Wellformedness Rules
	Classes and Associations
	Operations, Events and Attributes
	Statecharts

	Action language
	Principles
	Restrictions
	OMAL Syntax
	Lexical tokens
	Character set
	White spaces
	Comments
	Identifiers
	Keywords
	Literals
	Symbols and other tokens

	Grammar
	Meta-language
	Production rules
	Actions
	Expressions

	Some informal notes on static semantics
	Examples
	Plugging the actions specification into UML models
	Methods
	Transitions

	Time extensions: Predefined data and object types
	Timer

	Time annotations syntax
	Event types
	Event inheritance
	Syntax
	Semantics

	Event matching statements
	Invoke
	Syntax
	Locality
	Static semantics

	InvokeReturn
	Syntax and semantics
	Locality
	Static semantics

	Send
	Syntax and semantics
	Locality
	Static semantics

	ReceiveReturn, AcceptReturn
	Syntax and semantics
	Locality
	Static semantics

	Receive, Accept
	Syntax and semantics
	Locality
	Static semantics

	ReceiveSignal, AcceptSignal
	Syntax and semantics
	Locality
	Static semantics

	Start, End, StartEnd
	Syntax and semantics
	Locality
	Static semantics

	StartTransition, EndTransition, StartEndTransition
	Syntax and semantics
	Locality
	Static semantics

	Enter, Exit
	Syntax and semantics
	Locality
	Static semantics

	Syntax and semantics

	Constraints
	Duration between events

	Property specification using UML observers
	Component based design syntax
	Syntax of OCL as supported in Simple UML
	Vocabulary
	Keywords
	Reserved Identifiers
	Basic Expressions
	Standard Library

	LSC
	References

