
Correct Development of Real-Time
Systems

ΩMEGA

DDeelliivveerraabbllee DD77::
FFIINNAALL PPRROOJJEECCTT

RREEPPOORRTT

July 2005

Editor: Susanne Graf, Verimag

Contributors: Susanne Graf, Frank de Boer, Pierre Combes, Jozef Hooman,
Hillel Kugler, Marcel Kyas, David Lesens, Iulian Ober, Angelika Votintseva,
Yuri Yushtein, Meir Zenou

Document Version: 7

Status: Final version

Confidentiality: Public

Date of version: 06/07/05

Omega IST-2001-33522 - Final Project Report

July 2005 2

Omega IST-2001-33522 - Final Project Report

Table of contents

1 EXECUTIVE SUMMARY ... 5
2 PROJECT OBJECTIVES .. 6
3 OMEGA GENERAL METHODOLOGY AND ARCHITECTURE.. 8

3.1 PROBLEM STATEMENT .. 8
3.2 GENERAL TOOL SET ARCHITECTURE AND INTEGRATION ... 9
3.3 WORKFLOW FOR THE CONSIDERED PROFILE AND TOOLS... 11
3.4 REFERENCES CONCERNING THE GENERAL METHODOLOGY ... 12

4 OMEGA UML PROFILE FOR REAL-TIME AND EMBEDDED SYSTEMS AND ITS
SEMANTICS... 13

4.1 UML PROFILE... 13
4.1.1 Operational profile and Kernel Model.. 13
4.1.2 Real-time extensions and observers .. 14
4.1.3 OCL... 15
4.1.4 Component model.. 15
4.1.5 Live Sequence Charts .. 16
4.1.6 Availability of the profile... 17

4.2 SEMANTICS... 18
4.3 REFERENCES CONCERNING PROFILE AND SEMANTICS ... 20

5 OMEGA TOOL SET FOR VALIDATION OF UML SPECIFICATIONS............................. 21
5.1 OVERVIEW ON THE TOOL SET.. 21

5.1.1 Untimed Verification tool UVE ... 21
5.1.2 IF/IFx tool for verification of timing and dynamic properties .. 23
5.1.3 The LSC Play Engine .. 25
5.1.4 PVS based tools and methods.. 27

5.2 OVERVIEW ON WORK ON SCHEDULING AND COORDINATION... 28
5.2.1 Fundamental results.. 28
5.2.2 Applications... 29

5.3 INTERFACES PROVIDED AND USED BY THE TOOLSET ... 30
5.3.1 Common format for model representation .. 30
5.3.2 Additional interfaces provided .. 31

5.4 REFERENCES CONCERNING VERIFICATION METHODS AND TOOLS ... 31
6 EXPERIMENTAL RESULTS: THE OMEGA CASE STUDIES... 33

6.1 CASE STUDY 1: ARIANE-5 FLIGHT PROGRAMME ... 33
6.2 CASE STUDY 2: A VOTE MONITOR.. 35
6.3 CASE STUDY 3: MARS SYSTEM .. 36
6.4 CASE STUDY 4: A SERVICE COMPONENT BASED DEPANNAGE SYSTEM 39
6.5 CASE STUDY 5: COMPOSITIONAL VERIFICATION OF THE MARS CASE STUDY 41
6.6 REFERENCES CONCERNING THE CASE STUDIES ... 42

7 SUMMARY OF RESULTS AND ACHIEVEMENTS... 43
8 LESSONS LEARNED... 45

8.1 WHAT WOULD WE DO THE SAME? WHAT DIFFERENT? .. 47
9 PLANS FOR THE FUTURE.. 49

9.1 PROFILE AND SEMANTICS.. 49
9.2 METHODS AND TOOLS .. 50
9.3 OTHER PLANS` .. 52

10 ANNEX A: LIST OF PROJECT PUBLICATIONS .. 54

July 2005 3

Omega IST-2001-33522 - Final Project Report

July 2005 4

Omega IST-2001-33522 - Final Project Report

1 Executive Summary
The Omega project has been a three year research and development effort on the part of
a consortium of six academic bodies and four industrial users, partially funded by the
European commission under the Fifth Framework Agreement. Moreover, the project
got support and feedback expressing interest from three of the main UML tool
providers, as well as concrete collaboration proposals of one of them.

The aim of the project is to increase the efficiency and competitiveness of the European
Software industry by providing a framework for tighter integration of software
validation into the software development process with the aim of contributing to the
reduction of the cost and time of the software development process in the context of
real-time and embedded systems.

All results of the project are available in some form to the general public:

• Scientific results are provided in the form of largely distributed
publications

• The UML profile for real-time and embedded systems developed in the
project, which is available in the form of documents and libraries

• The tools developed in the project are maintained by their owners and
accessible to external users,

• An overview on and pointers to project results are available on the Omega
web page: http://www-omega.imag.fr/

This is the final report of the project which focuses on the objectives, achievements and
lessons learned. It provides also some discussion of future research directions. In the
course of the past three years, the consortium has:
• Developed a UML profile adequate for the development of real-time embedded

systems and usable with some major UML CASE tools1, including means for the
expression of functional and non functional specifications and requirements of such
systems. The consortium has also provided a formal semantics allowing a
consistent use of the different notations provided by the profile.
This profile turned out to be useful for modelling real-time systems and their
timing properties. It will continue to be used as is with the existing tools. Parts
of it have already influenced the new version of the standard (in particular
UML 2.0 sequence diagrams) and it will flow into the new real-time standard
(in particular MARTE and the semantic profile). For

• Developed a set of tools and methods allowing the validation of different aspects of
systems, in particular coordination and timing related issues, of models adhering to
the constraints of the Omega profile. The tools address both checking of internal
consistency of specifications and requirements and consistency of specification
models with requirements.
These tools continue to be maintained and further developed. In particular
industry funded follow-up projects for tighter integration with existing UML

1 In the project, we worked with Rhapsody and Rational Rose, comparisons with profiles of other tools
remain still to be done

July 2005 5

Omega IST-2001-33522 - Final Project Report

case tools, such as Rhapsody, and integration into Eclipse are being set up or
already started.

• Completed four different experiments of the usage of the Omega profile and tool set
on four different case studies addressing different application domains in
collaboration between the tool providers and the users.
These case studies were extremely useful for the success of the project. They
successfully demonstrated the usefulness of the profiles and tools developed in
Omega. Presently, they are used both by the academic partners who built the
tools and the industrial users who provided the case studies to promote the
project results in the community of embedded systems in general and
internally in their respective companies. The exploitations planned for the
profiles and the tools are to a large part due to the demonstrations provided by
the case studies. Detailed accounts and analyses will be available shortly in the
form of publications.

• Provided methodological support for a potential user of the OMEGA profile and
tools providing support for optimal usage of the profile and the tools, independently
of the general development methodology adopted by the user. The case studies and
the obtained validation results are available as a part of the methodological support.

• Participated in many conferences and workshops for disseminating the project
results and publishing 80 papers in proceedings of international conferences and
journals. In addition, the project plans a special section in an international journal
on results on the Omega project.

• Organised and initiated more than 10 workshops and conferences. In particular, the
consortium created successful forums aiming at the exchange of results and
experience reports from academia and industry related to the topics of OMEGA: the
symposium on Formal Methods for Components and Objects, FMCO, and a
workshop on the Specification and Validation of models for Real Time and
Embedded Systems, SVERTS.

All the above mentioned results are discussed in more details in the following sections
of this report and more detailed exploitation plans explained in Section 9.

2 Project Objectives
Building embedded real-time systems of guaranteed quality, in a cost-effective manner,
is an important technological challenge. In many industrial sectors, a development
process supported by validation and verification tools is requested.
Modelling plays a central role in software and systems engineering. The use of models
can profitably replace experimentation on actual systems with incomparable advantages
such as,

• enhanced modifiability of the model and of its parameters,
• ease of construction by integration of models of heterogeneous components,
• generality by using genericity mechanisms and behavioural non determinism,
• enhanced observability and controllability, in particular, avoidance of probe

effect and of disturbances due to experimentation,
• possibility of abstraction and application of formal methods.

July 2005 6

Omega IST-2001-33522 - Final Project Report

Building models which faithfully represent complex systems is a non trivial problem.
Often, modelling techniques are applied at early phases of system development at a
high level of abstraction. Nevertheless, there is a need for a unified view of the various
activities in the life-cycle and of their interdependencies.

The so called model driven engineering methods rely on the existence of one or several
models providing complimentary views of the system which are used for validation and
code generation. The Unified Modelling Language UML has been defined for
supporting such an approach. It includes notations for the description of structural and
different behaviour views of an application, as well as platform dependent information.
UML is a set of weakly integrated concepts, and when the project started, it had really
weak coverage of the needs of real-time embedded systems which have been improved
since with UML 2.0 which at the project start existed in the form of an early draft.

The aim of the Omega project was not to cover the whole process, but aimed at making
possible the integration of the use of formal verification techniques in the development
progress.

• Identify a reasonable and effective subset of UML which can be used for the
development of real-time embedded systems, including both specification level
and requirement level notations, and both implementation independent and
implementation dependent real-time aspects of such systems.

• Provide a formal semantics of this profile in order to make possible consistent
use of different notations, as well as the consistent mapping into the input
languages of the formal verification tools.

• Provide a set of tools for the verification of real-time embedded systems
described in this profile, where different tools may validate different aspects.
For mastering complexity issues, develop methods and tools for compositional
verification and experiment methods for synthesis of specifications from
requirements.

• Provide sufficient methodology support so that the users can use the developed
profile and the tools.

• Apply industrial case studies for evaluating the new real-time UML profile and
the proposed verification methods and tools.

The work in OMEGA was based on the following hypotheses:

• Verification is only an aspect of the whole process, even if it is the only one
considered in this project. This means that the chosen profile must be rich
enough to fit the development process and if the validation process imposes
restrictions, they are not allowed to hinder the development process.

• If we develop a profile rich enough for fitting the needs of the users coming
with a well defined semantics and tool support for validation, it will be taken up
by CASE tool providers

• Developing state-of-the-art verification tools is expensive, and as they concern
only a subset of the users, CASE tool builders hesitate to invest into such
technologies. This, amongst others, motivated our choice to build on the
standard model interchange format XMI, adopted presently by some of the main
UML CASE tools.

July 2005 7

Omega IST-2001-33522 - Final Project Report

3 OMEGA general methodology and architecture

3.1 Problem statement
The project builds on the generally accepted assumption that the so called model based
engineering will help to build better systems and to make their maintenance easier.. It
presumes the existence of a model, or of a set of models, which is used for specification
purposes, for validation purposes – including all kinds of validation techniques, as well
as possibly also test case generation - and for generating code – where code generation
is done in an automatic fashion or it provides skeletons, including the relevant
information of the model in such a way that the code can be fed back into the model.
We have considered that UML is a good candidate for such an approach; it provides a
number of notations allowing to represent a system model at a more or less detailed
level, there are multiple CASE tools that can be used to define models, and there exist
some examples demonstrating the intended process – for example the process proposed
by Rhapsody [Ilo] or by the Accord model [Acc] and others. It’s on those we wanted to
improve by extending them with more powerful features for expressing requirements
and time and by considering more abstract, and nevertheless formal, models. Having
defined such a profile, the project considered two interesting problems in a framework
of model based development, which is often neglected by commercial tools:

• Tool support for validation, whenever possible by reusing existing state-of-the-
art tools.

• Explorative research on two issues related to model transformation:
o Synthesis of a design level model (a state machine for each class) from

requirements expressing a service point of view.
o A generalisation of the scheduling problem, the transformation of a

design level concurrency model into an implementation level
concurrency model.

The validation tools existing before the project started, did not handle many of the
concepts to be dealt with in UML, such as inheritance, dynamic object creation, time
etc, and no existing tool handled all of them in combination.
Semantic issues are important, even if different tools handle different aspects of the
system, there will always be some overlap between the concepts handled by different
tools, and in order to verify dynamic properties, tools must somehow agree on a
common semantic ground to provide valuable feedback to the users.

July 2005 8

Omega IST-2001-33522 - Final Project Report

3.2 General tool set architecture and integration
A general overview on the tool set and on the possible flows between the different tools

XM I
Omega exchange

format

Untimed Model-Checking (UVE)
Untimed Omega models
IModel checking between model and LSC
and temporal logic
Error traces = sequence charts

Timed model-checking (IFx)
OMEGA models with time extensions and
observers
Simulation of UML models
Model-checking of between model and observers
UML oriented feedback
Visual representation of properties and error
traces

PVS based validation
UML models and OCL with time in
PVS
Infinite and parameterized models

Omega
compliance

check

LSC tools
Class information from XMI
Editing of LSC with time
Consistency of LSC
Export of LSC to XML
State machine synthesis (play-out)

XML
Representation of

LSC

X
(s

R

ML based execution
emantic exploration)

ule based tool for
execution of XMI

UML CASE tool
(Rhapsody, Rose)

Figure 1: Overview on the toolset

XML format (SXMI)
intermediate
representation

is provided by Figure 1. It shows the possible flows and interactions of the user with
the set of tools.
The tool integration is obtained by the use of common formats at model level. Each
tool extracts some information from the common model for its particular analysis. We
have chosen this type of integration based on a few common formats as earlier
experiences showed that a tighter integration is often difficult to achieve and is fragile,
in the sense that evolution will break the integration. In our setting, the different tools
can be used even independently of each other if not all types of analysis are required.
From the point of view of the user, the interaction with the tools is as follows:

• He elaborates a model with a UML case tool – in the project we have used and
tested the tools Rose from Rational/IBM and Rhapsody from Ilogix – by
respecting the Omega constraints and syntactic conventions, and he exports the
model in XMI using the tool’s exporter.

July 2005 9

Omega IST-2001-33522 - Final Project Report

• The generated XMI model can be analysed for compliance with the Omega
profile using a tool called xmicheck which can be used independently from the
verification tools and which is invoked from shell.

• When using the untimed model-checker of an operational model, the user will
open the UVE tool, import the XMI, edit some properties in one of the tool
internal property editors or import LSC generated by the LSC Play Engine and
verify the properties on the model. Methodological guidelines are provided in
[D3.3A1].

• The IFx/IF tool is composed of several components which can be used in
different ways. The most common workflow is the following: the XMI file
containing the UML model and the properties to be verified (UML observers)
is compiled into an IF specification (using uml2if). The IF specification may be
simplified (e.g., for eliminating dead variables and code) using the static
analysis tool dfa, which yields another, equivalent or more abstract, IF
specification. The IF specification is further compiled into an executable
(simulator) which can be used either for interactively simulating the model or
for generating the whole system state space and searching for (observer’s) error
states. All these phases may be performed either in command line or using the
IFx GUI (which is also the GUI for performing interactive simulation). The
methodology for working with the tool is explained in [D3.3A2]

• For using the LSC Play Engine in combination with UML, the UML model
needs only to provide a class diagram defining the object structure, signals and
methods which can be imported by the tool. The Play Engine is an interactive
graphical editing, simulation and validation tool for requirements in the form of
Live Sequence Charts (LSC). Methodological guidelines are provided in
[D3.3A31].

• Users of the PVS based tools also start by importing an XMI file of a concrete
UML model. Via the intermediate SUML format, the XMI file is translated into
a representation of the UML model in the typed higher-order logic of PVS. This
model may include OCL specifications (as comments) which are translated
separately into specifications in PVS. Alternatively, the user may express
specifications directly in the specification language of PVS. The generated PVS
files representing the concrete model are imported by general PVS theories that
define the semantics of UML models in general. This defines the set of all runs
of the UML model and the user can start proving properties about these runs. To
prove a property, basically the (x)emacs interface of the PVS proof checker is
used (although there are a few Tcl/Tk-style windows that are more user
friendly). The user types in proof commands that may gradually reduce the
proof goal until it is completed. Clearly, this requires experienced users. Some
methodological guidelines on verification with PVS in OMEGA can be found in
[D3.3A41].

All tools provide as feedback some evidence for property satisfaction or non
satisfaction, simulators and model-checkers in terms of (un)successful traces and
provers in terms of proofs or non proved verification conditions. The analysis of the
model and the error traces and the appropriate modification of the properties and/or the
UML model are done by the user using the appropriate tool.

A more detailed overview on the profile is given in section 4, and an overview on the
functionalities and restrictions of the individual tools in section 5.

July 2005 10

Omega IST-2001-33522 - Final Project Report

3.3 Workflow for the considered profile and tools
The work in Omega is based on a simple UML-based development process, which
represents the basic process of most methods that are currently used in practice. As a
starting point, we consider an iterative, incremental development process, which can be
used to indicate how we intend to support UML-based development by formal methods
and tools. The basic activities of this process are:

1. Specify and analyse requirements
2. Define an architecture

where the first two points may go hand in hand, as shown for example by the fact
that the formalisation of the requirements using LSC, OCL or observers, supposes
the existence of a vocabulary provided by an initial architectural decomposition2.

3. Iterate the following steps, for an increasing part of the system under
development:
3.1. Design a part of the system
3.2. Refine this design until it is close to a concrete implementation
3.3. Realize a version of the system on a concrete platform
3.4. Evaluate the current version and select a new part.

Note also that this process is only used as a stepping-stone to illustrate the Omega
techniques; it is certainly not the only process that can be supported by our techniques.
But it provides a useful framework for a discussion about the place of the Omega tools
in the development process and their relation.

Timing occurs early in the process. In real-time and embedded systems, timing
constraints are often even a part of the requirements. In addition, especially as systems
are rarely built totally from scratch, some assumptions or knowledge on platform and
the physical architecture induced timing constraints can be considered at an early stage
of design, allowing early architecture validation or, if needed, re-architecturing.

In the case studies, we have done only limited design space exploration; we
have played with variations of the time constraints of the case studies which all
have been obtained more or less as a posteriori models built by reotro
engineering from existing systems.

2 Indeed, requirements are expressed often in terms of some inner structure, inner components and
interfaces.

July 2005 11

Omega IST-2001-33522 - Final Project Report

Formal Support for the Development Process

Table 1 lists the concepts that are used to describe the results of the four workflows of
our development process: requirements, architecture, design, and implementation. We
mainly use UML-based concepts, which are extended or modified where appropriate.
Moreover, we indicate the formal techniques developed within Omega to support these
activities

Core
Workflows

Omega/UML - concepts Omega support for validation

Requirements Use Case Diagrams (informal)
Live Sequence Charts (LSC)
OCL
State Machines (including
observers)

Play-out approach using LSC
Internal consistency of LSC, OCL specs
Refinements of specifications
Deduction and verification of properties

Architecture Components Diagrams (e.g.,
with required and provided
interfaces),
LSC, OCL,
(Protocol) State Machines

Correctness wrt requirements
Compositional verification
Timing analysis
Refinement of architecture properties

Design Class Diagrams,
OCL,
State Machines,
LSC

Correctness wrt (component) specs
Synthesis of State Diagrams
Correctness of refinement steps, within and
between iterations.

Implementation Deployment Diagram Scheduler verification (and synthesis)

Table 1: Overview Omega development process and formal support

3.4 References concerning the general methodology
[Ome] The Omega web page, http://www-omega.imag.fr/
[Acc] Agnes Lanusse, Sébastien Gérard, François Terrier, "Real-time Modeling

with UML: The ACCORD Approach", in UML'98, LNCS 1618
[D3.3] Jozef Hooman Editor, “Omega General Methodology”, Feb 2005
[D3.3A1] Angelika Votintseva, “Deliverable D3.3 Annex1: General methodology, un-

timed verification”, Feb. 2005
[D3.3A2] Iulian Ober, “Deliverable D3.3 Annex 2: Specification and verification of

real-time systems using the Omega real-time profile and the IF verification
tool”, Feb. 2005

[D3.2A31] David Harel, Hillel Kugler and Gera Weiss “Deliverable D3.3 Annex31:
Some Methodological Observations Resulting from Experience Using LSCs and
the Play-In/Play-Out Approach”, Feb. 2005

[D3.3A41] T. Arons, J. Hooman, H. Kugler, A. Pnueli, M. van der Zwaag
“Deliverable D3.3 Annex41: Deductive Verification of UML Models in
TLPVS”, Feb. 2005

[Ilo] Ilogix, The Rhapsody development environment, http://www.ilogix.com/

July 2005 12

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/G=eacute=rard:S=eacute=bastien.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Terrier:Fran=ccedil=ois.html
http://www-omega.imag.fr/doc/d1000352_1/WP3-D33-352-V1-Annex1.pdf
http://www-omega.imag.fr/doc/d1000352_1/WP3-D33-352-V1-Annex1.pdf
http://www-omega.imag.fr/doc/d1000329_2/WP3-D33-329-V2-dagstuhl05.pdf
http://www-omega.imag.fr/doc/d1000329_2/WP3-D33-329-V2-dagstuhl05.pdf
http://www-omega.imag.fr/doc/d1000329_2/WP3-D33-329-V2-dagstuhl05.pdf
mailto:jozef.hooman@embeddedsystems.nl
http://www-omega.imag.fr/doc/d1000328_1/WP3-D33-328-V1-Annex41.pdf
http://www-omega.imag.fr/doc/d1000328_1/WP3-D33-328-V1-Annex41.pdf

Omega IST-2001-33522 - Final Project Report

4 OMEGA UML profile for real-time and embedded systems
and its semantics

This section discusses the UML profile chosen in the project and its semantics; it
answers some questions, concerning the choice of UML and the particular profile
chosen and about the problems concerning semantics.

4.1 UML profile
The choice of the subset of UML that we have made can be considered as relatively
standard with respect to the choices of commercial UML tools for simulation and/or
code generation for real-time and embedded systems, such as Rhapsody, Telelogic
TAU and Rose Real-Time, emerging from ROOM. These tools mainly focus on what is
called a “platform independent” description of the system, that is a model focussing on
the software structure and on the functionality of an application, independently of the
middleware, OS, hardware architecture,… it is going to be executed on.
A so-called “platform dependent” model should provide in addition, enough
information to generate code or to analyze non-functional aspects for a given platform.
Notice that the UML profile for Scheduling, Performance and Time (SPT) [SPT03] –
focuses like we do – on the analysis of time related properties; to this aim, it provides
concepts for defining different kinds of “resources”, “task” needing a resource to be
executed and consuming some quantities, in particular time.
An aim of the Omega project is to handle these two aspects less independently as they
are in most existing tools. The aim is to use less violent abstractions of one aspect when
verifying the other, in cases where this is needed.

The profile has been defined in phases. First, a so called Kernel Model, has been
defined, representing a useful operational subset, rich enough, to start the work on the
tools and the case studies. In particular, the combined modelling synchronous and
asynchronous parts of a system, is an important issue in some of the case studies. The
criteria for the choice of this profile are the usefulness for the potential users, the
availability of the chosen notations in the CASE tools, the semantic choices of existing
UML tools and the possibility to provide rapidly some verification tool support for the
chosen notations. In a second phase, notations for the expression of time constraints, of
requirements and for structuring models are defined.

4.1.1 Operational profile and Kernel Model
For the OMEGA Kernel Model, we have chosen, like the considered CASE tools, a
relatively complete subset of the operational part of UML, where

• The static structure of the system is described in terms of a class diagram with
only a few restrictions, where associations between classes express inclusion or
accessibility.

• In particular, like the standard profile, we distinguish between active and
passive classes, but with a particular interpretation: the behaviour of an active
class and all the classes owned or created by it, represent a mono-threaded
behaviour, executing request in a run-to-completion fashion. This notion of
activity group is also used in Rhapsody, and is similar to the notion of process
in SDL or capsule in ROOM.

• Communication between objects is either via asynchronous signals or via
synchronous operation calls, where we distinguish between primitive operations

July 2005 13

Omega IST-2001-33522 - Final Project Report

which are executed by the calling thread and normal operations which are
scheduled by the active object of the activity group.

• The behaviour of the system is described by means of an explicit imperative
action language which can be used in combination with a form of state machine
notation for describing transition systems extended with data, communication
and object creation.

4.1.2 Real-time extensions and observers
UML 1.4 includes no support for real-time, but a profile for Scheduling Performance
and Time (called SPT profile) had been defined, including some extensions for the
expression of timing properties, mainly in the form of tag values. We have defined a
real-time profile that respects the SPT profile which takes over most of its basic
concepts, defines a concrete syntax where this is missing and specifies the usage. Also,
contrary to the SPT where time constraints are mainly expressed at instance level, the
Omega real-time profile enables time constraints at class level.

• We have introduced the notions of timer and clock, as they exist in other
modelling formalism and as they have been introduced in UML 2.0. Timers can
be set and deactivated and cause a “timeout event” after a specified duration and
clocks can be set and deactivated, and when active, they count the duration
since they have been set for the last time. This allows the definition of time
dependent behaviour by means of new primitives in the action language.

• We provide syntactic access to semantic level events. A semantic level event is
a state change in the underlying dynamic semantic. Each syntactic construct
may have to 0, 1 or more semantic level events associated. With a state an enter
and an exit event is associated, with a signal transmission, a send, a receive and
a consume event. A syntax is defined for identifying all state changes. An event
can be defined as a class stereotyped <<event>> with predefined parameters
depending on their type (all events have an occurrence time, a send-signal event
has a sender, a receiver, a signal type, signal type depending parameters) and
possibly user defined attributes. Moreover, there are means to refer to different
occurrences of an event in a given execution or prefix of it.

• Expressions of the type duration which can be used in time constraints can be
defined simply using arithmetic expressions on clocks and the occurrence time
attribute of different events (this is the access to time and duration used in OCL,
see below and in observers, see next item), by a set of predefined duration
expressions

• Time constraints may be arbitrary Boolean expressions depending on time and
duration expressions, but we consider only linear constraints in all our tools.
Time constraints can occur

o In the form of guards in state machines and observers,
o conditions in LSC,
o OCL constraints
o explicit time constraints or constraint patterns associated with different

UML construct, as they are foreseen in SPT (WCET associated with
methods, minDelay, maxDelay associated with channels,…) ; notice that
such derived constraints are presently not implemented in the tools, they
have to expressed using the basic means for expression of time
constraints

July 2005 14

Omega IST-2001-33522 - Final Project Report

• We have introduced observers mainly as a means for expressing complex time
constraints using a UML operational syntax, accessible to the user. They are
defined as stereotyped of state machines, where transitions are triggered by
semantic level event occurrences (they can be identified using explicitly
defined event instances or by using an event matching clause as in the definition
of a corresponding event class). An observer allows expressing constraints on
the order and/or timing of occurrence of semantic level events and is a means to
define dynamic properties depending on time or not. Observers have proven to
be well accepted by users. They express safety properties in the form of
acceptors (an execution leading to an <<error>> state represents an error trace).
In addition, observers can express assumptions (a sequence leading to an
<<invalid>> state is “not to be considered”).

• Finally, some minimal concepts have been introduced to define scheduling
constraints and general scheduling policies.

4.1.3 OCL
OCL has been developed as a constraint and query language for static UML models
and does therefore not adequately capture the dynamic behaviour of objects and
systems. To overcome this short-coming, we distinguish between local constraints,
which are used to specify the behaviour of an object without referring to the context in
which it is used, and global constraints, which are used to specify the context in which
object occur and how objects are connected. This distinction is achieved by using the
additional stereotypes <<local>> and <<global>> which are attached to constraints.
Additionally, we defined a trace logic in OCL which specifies an object's behaviour in
terms of constraints of traces of events it can observe. The trace logic is a conservative
extension of OCL 2.0, where we provide data types for events, very similar to the
events presented in the preceding section, and a logical constant “trace” of type
Sequence of Events which designates the local trace. For global specifications, we
introduced a corresponding global assertion language, which is a generalisation of the
local assertion language. Finally, these assertion languages include mechanisms for
specifying global constraints by providing component and system contexts. This is
necessary, because OCL 2.0 assumes that the context, in which a constraint is to be
evaluated, is an object and not a collection of objects.
This extension of OCL allows one to capture all safety properties of an object in a way
similar to LSC or sequence diagrams, without being bound to refer or provide an
objects environment.

4.1.4 Component model
In OMEGA, we have anticipated the UML2.0 component model by using the notations
provided by the profiles available presently in tools. Components encapsulate their
internal description and interact only through a certain kind of objects which are called
ports. Ports are instances of internal classes which are represented by roles. Roles
export information about the required and provided operations of these classes by
means of interfaces.

Another distinguishing feature of the OMEGA component model is that ports can
dynamically instantiate their associated required interfaces which are used to represent
external classes belonging to other components. Connectors wire roles of different

July 2005 15

Omega IST-2001-33522 - Final Project Report

components together to form a component-based application, and a required interface I
acts as placeholder for the external class realizing the role wired to I.

Notice that Components in UML 2.0 do not encapsulate their internal structure. In
OMEGA a component does encapsulate its internal class structure because in OMEGA
we have defined the relation between the internal class structure of a component and its
(provided and required) interfaces at the level of the action language for state machines.
A characteristic feature of this relation is that the state machines describing the
behaviour of ports in general contain actions for instantiating required interfaces. By
the component connectors these required interfaces are associated to the classes
describing the ports of another component. Consequently, component connectors in
OMEGA allow for the inter-component dynamic creation of ports.

OMEGA components are used to structure sets of classes and to support a modelling
discipline based on interfaces. Based on the connections provided by a component
system diagram, we formalize the semantics in terms of the semantics of the underlying
class structure. The behaviour is defined as the concurrent behaviour of the objects
living in the component and renaming the required interfaces in the corresponding
state-machines by their realizations as specified by the connections.

The CASE tools Rhapsody and Rational Rose do not support components yet. As a
workaround, a component based design can be done within the Kernel Model Language
by modelling components as classes. One can also associate LSCs and OCL assertions
to components to specify the overall behaviour of their ports. One can also associate
with each role of a component a state machine describing the externally observable
behaviour of its instances. The resulting set of state machines describes the overall
behaviour of the ports of a component. The interactions between the ports of different
components then can be model-checked by the OMEGA tools.

OMEGA also started preliminary work on a compositional semantics of components.
Such a semantics forms the basis for the further development of compositional
verification techniques which allow separating the verification of the observable
interactions between components from the verification of their implementation.

4.1.5 Live Sequence Charts
Sequence diagrams are widely used by UML users, but their UML 1.4 version is not
expressive enough, as they can describe only a particular (desired or forbidden)
execution of a particular set of instances up to the order of independent events.
For this reason, we have chosen Live Sequence Charts [DH99], a formalism extending
the existing versions of Sequence charts (MSC, High Level MSC,…) by adding

• Quantifiers, stating that either there exist an execution or all executions with a
certain prefix are compatible with a given chart (distinction of existential- or
possible - and universal – or mandatory -charts)

• Liveness constraints by marking certain events “mandatory” (so called hot
conditions) to distinguish which observations of prefixes are considered to
satisfy the chart and which ones not.

These Live Sequence charts have been extended in Omega for taking into account
Object Orientation and timing constraints:

July 2005 16

Omega IST-2001-33522 - Final Project Report

• The Global time progress supposed in Omega is represented by an external
event tick, representing time progress by one time unit. LSC specifications can
store time in variables and conditions can contain constraints on such variables,
similar as in timed automata. Due to the distinction between mandatory and non
mandatory conditions, this allows to distinguish between reaction to external
time progress and time dependent requirements.

• The extension to object orientation and dynamic systems is obtained by
allowing the interpretation of “life lines” as classes (a set of potential instances)
and the introduction of quantifiers on life lines. This allows distinguishing the
case where the event specified by the LSC should be observed in all existing
instances of a class at the instant of occurrence of the corresponding event, and
the case where the behaviour must be observed in at least one such instance.

A set L of events traces and conditions satisfies a set of LSC charts if each trace in L
satisfies all universal charts and for each existential chart there exists at least one trace
satisfying it. A trace in L satisfies a universal chart, if in its projection on the set A of
events and conditions observed by the chart is of the form

(A*-prechart)∞ ∪ ((A*-prechart);prechart;mainchart)∞
A detailed description of the semantics of LSC can be found in [D.1.2.2bis].

4.1.6 Availability of the profile
The profile is defined by a set of documents describing a set of admitted constructs and
other restrictions, a set of stereotypes and tag values that can be used and their
meaning, as well as a library containing the definition of time-related data types
(available in Rational Rose and in I-Logix Rhapsody formats). Pointers to all parts of
the profile are available at http://www-omega.imag.fr/profile.php

1. Operational Kernel model: the kernel model is defined by some restrictions of
the UML 1.4 profile and a few extensions with stereotypes and predefined tag
values. Descriptions can be found in the publications [DJP*02, DJP*05]. All the
tools developed in OMEGA are based on the kernel model and consider at least
a subset of it. The document [Syntax] provides an overview on the accepted
syntax, including the Omega Action Language OMAL which is accepted by the
Omega tools.

2. Timing extensions: The time extensions consist mainly in the definition of
stereotypes which are described in [GOO04] and in the syntax document
[Syntax]. We have defined a library that contains the definition of time-related
data types. The library is part of the IFx distribution.

3. OCL: The OCL extensions are defined as a conservative extension of OCL2.0,
where the extensions are described in [KdB03a, KdB03b, KdB04]. It tries to
subsume part of the expression language of the timing extensions, but uses a
different syntax. Its syntax is defined in the document [Syntax].

4. Component model: The component model is defined mainly in terms of syntax
conventions which are described in the document [Syntax].

5. LSC: LSC are a particular form of sequence diagrams, originally defined in
[DH01] explaining graphical syntax. More recent descriptions with extensions
are defined in [HM02, MHK02, LSCuser04, D1.2.2-b]. Graphical editors are
implemented in Weizmann’s PlayEngine and in OFFIS’ UVE tool.

July 2005 17

Omega IST-2001-33522 - Final Project Report

4.2 Semantics
Consistency of semantics

We have defined a formal semantics for all parts of the system in terms of sequences of
the above defined semantic level events, where time extensions add an occurrence time
to events. The problem solved by the tools, is answering a question of the form

environment assumption + mode l |= property ?

where environment, model and property may be expressed using different formalisms,
but for each one a single one is used. The question can be reduced to a question of the
form

L(environment assumption + model) ⊆ L(property) ?

and this is well defined if the (timed and untimed) semantics of the formalisms used for
models and properties are defined independently. Ensuring consistency is now, as
usual, the problem of the tool builder to correctly implement an algorithm solving this
question.

Semantic choices

Notice that one of the aims of OMEGA was to provide a new profile for Real-time and
embedded systems which extends the expressivity of the currently existing tools. For
this reason, today, the user can not use the analysis tools together with the code
generator of his CASE tool as none of them generates code in accordance with the
Omega profile.
The questions about semantic choices were discussed mainly for the operational Kernel
model and for the time extensions.

One motivation of the project was the definition of a profile and semantic framework
appropriate for the description of mixed synchronous/asynchronous systems. In this
context arose the question on how to handle the non determinism induced by
concurrency and if and how to restrict non determinism of time progress.

• Synchronous approaches impose often deterministic time progress (in fact
maximal system progress) whereas asynchronous models in general assume
external time (non controllable time progress). Timed automata with urgency
allow any kind of control over time progress, but earlier experience showed that
explicit transition urgencies are not accepted by users. For time extended
operational specification, this lead us to the proposal of some choices of
urgency modes handling this issue implicitly, and it turned out that this was
sufficient for the considered case studies. In LSC, one of these options is
chosen, and time progress is determined by the environment, where the
environment is only taken into account in stable states and only one
environment event is available at a time. In OCL, this is somehow a non issue
as it is used only in a declarative manner. When working only with OCL
without the existence of a operational model, which is what we have mainly
done, restrictions on non determinism and time progress can be imposed by a
set of axioms3.

3 Such as those proposed in [GP05] in the context of abstract state machines

July 2005 18

Omega IST-2001-33522 - Final Project Report

• As a result, using the Kernel model with the notion of activity group (extended
with time), we can accommodate so-called GALS (Globally asynchronous,
locally synchronous Systems). Nevertheless, this needs still some undesired
workaround for those users used to the use of synchronous languages, such as
Esterel, Lustre or Signal.

• We have looked into the interest of general coordination frameworks, and we
have developed a component model based on a very general notion of
interaction between a possibly variable number of components based on lattices
of interactions complete interactions. We have showed that this framework
allows a more direct integration of synchronous and asynchronous systems
[GS02, GS03, GS04]. Nevertheless, it was not possible to integrate this work
directly into our UML profile as it would have required in addition a different
type of diagrams not accessible through existing UML tools.

The work on semantics generated several unexpected problems and lead to some
reflections on how to deal with them. We have obtained some insights, but there are
still many open questions:
1. It turned out that the initially provided version of the semantics, that everybody

believed to understand in a first approximation, led to many misinterpretations and
almost endless discussions amongst the partners. This motivated on one hand, the
elaboration of several abstract semantics on more restricted subsets of the profile. It
motivated also the work on the semantic exploration tool RML and some more long
term reflections on how to represent semantic choices in an easy to understand way.

• An implementation of the chosen semantics, such as they are provided by
the RML and the IFx tool together with a well chosen set of examples are
probably a good way to demonstrate by examples the user what the
semantics of a tool is, but this can not be the only information given to the
user – just like use cases, it will never be complete.

• The usage of explicit priority rules makes semantic variations easily
recognizable if these variations correspond to a particular elimination of non
determinism.

• Abstract semantics (of small sub-calculi) can also be helpful in this respect,
but there strength is rather to provide insight about the essentials of the
considered calculus or to help understanding the consequences of the choice
between to options for a given variation point. In particular, we have
developed an abstract class calculus [ABBS04].

2. The previous problem motivated us to try to identify all potential semantic variation
points. It was already clear from the experience with state chart semantics that the
number of variation points is very high in presence of parallel and deep history
states and therefore we left these features aside in a first approach. A study
provided in deliverable [D.1.1.4] shows that the possible variation points
concerning method invocation is also very high; moreover, the number of variation
points increases considerably with the granularity. This shows that it is probably not
practicable to provide the user an explicit choice for all variation points.

3. As one of the objectives of the project was to enable a compositional approach to
verification, some effort was spent to provide a compositional semantics instead of
the initial global semantics. The difficulty to provide such a semantics comes from
the aim to design a semantics which is both compositional and abstract; this

July 2005 19

Omega IST-2001-33522 - Final Project Report

provides information on the minimal information needed for the verification of a set
of relevant properties, and indeed, we obtained some interesting results here.
In OMEGA, a formal theory has been developed for reasoning compositionally
about the behaviour of a system in terms of its class invariants. A class invariant
describes in a generic manner the local communication traces of the instances of a
class. The behaviour of the system is given as a set of global communication traces.
In general, communication traces formalize message sequence charts in UML and
abstract from the actual creation of objects.
The compositional proof theory provides an axiomatic characterisation of
unbounded class instantiation at the level of abstraction provided by the
communication traces. Compositional verification techniques based on
communication traces have been applied successfully to the MARS example.

4.3 References concerning profile and semantics
[ABBS04] Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, Martin

Steffen Object Connectivity and Full Abstraction for a Concurrent Calculus of
Classes In To appear in the LNCS Proceedings of the First International
Colloquium on Theoretical Aspects of Computing, ICTAC 2004

[D.1.1.4] Harald Fecher, Marcel Kyas, Frank de Boer, Variation Points of the
Semantics concerning Methods, December 2003

[D1.2.2-b] D. Harel, H. Kugler, R. Marelly, A. Votintseva, J. Klose, B. Westphal,
Deliverable D1.2.2-b, Live Sequence charts for UML and their semantics

[DJP*02] Werner Damm, Bernhard Josko, Amir Pnueli, Angelika Votintseva
Understanding UML: A Formal Semantics of Concurrency and Communication
in Real-Time UML In Frank de Boer, Marcello Bonsangue, Susanne Graf,
Willem-Paul de Roever (Eds.) Proceedings of the 1st Symposium on Formal
Methods for Components and Objects (FMCO 2002) LNCS Tutorials vol. 2852
2003

[DJP*05] Werner Damm, Bernhard Josko, Amir Pnueli, Angelika Votintseva A
discrete-time UML semantics for concurrency and communication in safety-
critical applications In Science of Computer Programming 2005

[DH01] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45 -- 80, July 2001

[GOO04] Susanne Graf, Ileana Ober, Iulian Ober Timed annotations in UML
accepted to STTT, Int. Journal on Software Tools for Technology Transfer
Springer Verl. 2004

[GS02] Joseph Sifakis. Scheduler Modelling Based on the Controller Synthesis
Paradigm In Journal of Real-Time Systems, special issue on Control Approaches
to Real-Time Computing vol. 23 2002

[GS03] Gregor Gössler, Joseph Sifakis Composition for Component-Based Modeling
In 1st Symposium on Formal Methods for Components and Objects, revised
lectures LNCS Tutorials vol. 2852 2003

[GS04] Gregor Gössler, Joseph Sifakis Priority systems In proceedings of FMCO'03
LNCS 3188 2004

[GP05] Susanne Graf, Andreas Prinz Time in ASMs - Some problems and solutions
In ASM 2005, to appear in LNCS, 2005

[HM02] D. Harel, R. Marelly Playing with Time: On the Specification and Execution
of Time-Enriched LSC In Proc. 10th IEEE/ACM Int. Symp. on Modelling,

July 2005 20

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abraham.bonsangue.deboer.steffen:fa
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abraham.bonsangue.deboer.steffen:fa
http://www-omega.imag.fr/doc/d1000198_2/D1.1.4-Method.pdf
http://www-omega.imag.fr/doc/d1000198_2/D1.1.4-Method.pdf
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammJoskoPnueli*02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammJoskoPnueli*02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Damm*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Damm*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Damm*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GrafOber-umltime-sttt04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Sifakis-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Sifakis-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FMCO-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FMCO-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Prinz-ASM04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelMarelly02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelMarelly02

Omega IST-2001-33522 - Final Project Report

Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2002), Fort Worth, Texas 2002

[MHK02] R. Marelly, D. Harel, H. Kugler Multiple Instances and Symbolic
Variables in Executable Sequence Charts In Proc. 17th Ann. ACM Conf. on
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA'02) 2002

[LSCuser04] D. Harel and R. Marelly, "Play-Engine User's Guide" Play-Book
[KdB03a] Marcel Kyas, Frank de Boer, Assertion Languages for Object Structures in

UML, Omega Deliverable D1.2.1, 9. January 2003
[KdB03b] Marcel Kyas, Frank de Boer, Addendum to Assertion Languages for

Object Structures in UML, Omega Deliverable D1.2.1b, 18. July 2003
[KdB04] Marcel Kyas, Frank de Boer, On Message Specification in UML, In: de

Boer, Frank S. and Bonsangue, Marcello (eds.) Compositional Verification in
UML, ENTCS vol. 101, 2004

[Syntax] Marcel Kyas, Joost Jacob, Ileana Ober, Iulian Ober, Angelika
Votintseva, OMEGA syntax for users, Omega Deliverable D2.2.3 Annex 1.
January 2005.

External References

[SPT03] OMG, Response to the OMG RFP for Schedulability, Performance and Time,
v. 2.0 March 2002

5 OMEGA Tool set for validation of UML specifications

5.1 Overview on the tool set
This section gives a short overview on the functionalities and interfaces of the
individual tools, as well as the subset of the profile they are accepting. The way in
which they are integrated can be seen from the global toolset picture given in section 3
and from the specification of interfaces in section 5.3. A methodology using the
different tools in combination is presented in section 6.5. A short overview on all tools
developed in OMEGA can be found on the OMEGA webpage as well as in an
overview paper [GH04].

5.1.1 Untimed Verification tool UVE
The UVE tool (UML Verification Environment) serves to check functional and
dynamic properties of the Omega kernel model - structure, behaviour and the order of
the object communication - combining them into (temporal logic) formulas. It can be
applied at the design and implementation phases for the component verification when
real-time constraints are not yet specified. In cases where this makes sense,
requirements can refer to the number of steps in the model execution, thus achieving a
kind of discrete time. The most elements of the UML object-oriented features in class
diagrams and state machines, a subset of C++, a subset of CTL, LSCs, parameterized
environment, tuning verification parameters are covered by this tool set. A more
detailed description is published in [STMW04].

July 2005 21

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=MarellyHarelKugler02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=MarellyHarelKugler02
http://www.wisdom.weizmann.ac.il/%7Eplaybook/
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=references&key=OMG-RTUML
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=references&key=OMG-RTUML
http://www-omega.imag.fr/doc/d1000154_1/fmco02_UML_semantics.pdf

Omega IST-2001-33522 - Final Project Report

The main functionality of UVE is the following:

• Verification of a set of temporal logic formulas (defined via the provided
patterns): check of reachability, invariance, liveness, safety etc.

• Verification of LSCs: a compliance check between specifications and a design.
• Sequence diagrams generation:

o (a) as witness-paths for properties reachability and existential LSCs;
o (b) as counterexamples - error-paths - for so called invariant properties

such as, e.g., universal LSCs.
• Results visualization with symbolic timing diagrams (STDs) and LSCs.
• Verification of requirements under different kinds of assumptions, restricting

the non-determinism of the environment or of the system behaviour (e.g., not
yet implemented parts).

UVE consists of two components:

• Rhapsody-based, RUVE: the development was started in the AIT-WOODDES
project and has been extended within the OMEGA project with respect to
several features: extending the supported UML set in particular regarding
object-oriented elements, extending the formulization of properties (e.g.
introducing LSC specifications) as well as improving the verification engine
using optimization and abstraction techniques;

• XMI based - XUVE - developed in the OMEGA project. In addition to the
features covered by RUVE, XUVE adds the following functionality:

o the semantics defined in OMEGA with non-determinism between
concurrent regions in statecharts and non-determinism between enabled
transitions;

o OMEGA Action Language (in addition to C++) with extended
constructs for non-deterministic choice and concurrency;

o Two possibilities of the fine-tuning and invocation of the verification
process: using the Rhapsody graphical interface or from a command line
without a UML tool.

July 2005 22

http://wooddes.intranet.gr/
http://www-omega.imag.fr/
http://www-omega.imag.fr/

Omega IST-2001-33522 - Final Project Report

The tool-set has been partially extended with the means to derive symmetry property of
the whole model from the properties of its parts. This tool-extension is intended to be
used to reduce verification complexity as well as for the verification of unbounded
models.

The tool has been applied on two of the Omega case studies:

• MARS case study (NLR), verifying 4 main un-timed properties in different
versions represented as logical patterns and some of them as LSCs.

• Sensor Voting an Monitoring case study (IAI), verifying 2 main algorithmic
properties with different assumptions.

The integration of the UVE toolset in other tools was performed in the following
directions:

• Translation of a UML model into the XMI exchange format and XMI-based
verification

• LSC translation from and to the XML exchange format
• Integration into the commercial CASE-tool Rhapsody in C++

5.1.2 IF/IFx tool for verification of timing and dynamic properties
Within the Omega project, VERIMAG has developed the IFx toolset for timed
verification, simulation and scheduling analysis of Omega-UML models. The approach
that was chosen is to reuse the timed validation techniques that VERIMAG developed
for dynamic communicating timed automata extended with data and actions, as well as
the already existing IF toolbox which implements state-of-the-art validation and
verification techniques. A more detailed description focusing on the IF language –
including extensions made for the purpose of handling UML - and tool can be found in
[BGM02, BGOOS04] and one focusing on the front-end for UML in [OGO05]. The
main functionalities provided by IF/IFx are:

• Simulation allows the user to interactively explore a model’s execution graph.
The user may perform operations that are similar to those offered by advanced
debuggers: step by step execution, inspection of the system state, conditional
breakpoints, scenario rewind/replay, manual resolution of non-determinism,
control of scheduling policy and time related parameters, etc.

• Verification of simple consistency conditions like deadlocks, timelocks and
satisfaction of state invariants.

• Verification of dynamic and timing properties using the model-checkers
provided by the IF tool. The properties may be expressed within the UML
editor by means of the following notations provided by the Omega UML
profile:
• observer classes : classes with special state machines reacting to events and

conditions occurring in the system execution
• timing constraints : constraints on durations between system events

Furthermore, all the property expression formalisms of the tools connected with IF
can be used, in particular µ-calculus formulas, but they require knowledge about the
entities generated by the translation of UML to IF and are reserved to specialists.

July 2005 23

http://www-verimag.imag.fr/DIST_SYS/IF/IFx.html

Omega IST-2001-33522 - Final Project Report

XMI
UML model

+ time
annotations

Rose,
Rhapsody,

Argo,
...

UML tools
IF tools

IF
model

IF behavioral tools

state explorer

simulator verifier

test generator

IF static
analysis

live variables

IF
exporters

UML-IF frontend

UML2IF
translator +
compliance

checker

UML
validation

driver

slicing

abstraction

time
constraint

propagation

scheduling
analysis

Graph level tools (CADP)

minimization, comparison, composition...

Finally, verification te
scheduling analysis, b
properties to be verifie
models modulo simula
connections provided b

The architecture of the IF/
shows the UML tools spec
IF toolset, including some
main components of IFx (

• The UML-to-IF tr
format. The model
the Omega profil
annotations and ob
an IF specification
semantics.

• The UML front-
modellers for the
translation and pre
the initial UML m
features mentione
system.

The tool has been applied
• On the Ariane-5 c

of the model, to
configuration com
assumption of fixe

July 2005

Figure 2. Architecture of the IFx toolset
chniques implemented in the tool allow performing
y specifying scheduling objectives (e.g., deadlines) as
d (observers). Other types of functionality, like comparing
tion and bisimulation relations, are available through the
y the IF toolset to external tools.

IFx toolset is depicted in Figure 2 above. The upper part
ific to IFx, while the lower part shows the components of the
 modules developed in the OMEGA project (in blue). The
in addition to the IF toolset), are:
anslator which takes as input a UML model stored in XMI
 may use standard UML constructs and extensions defined by
e: actions written in the Omega action language, timing
servers expressing model properties. The translator generates
 corresponding to the UML model, according to the Omega

end provides an interface specifically targeted at UML
IF validation tools. The interface hides IF and the details of
sents simulation and verification results in the vocabulary of
odel. The interface supports all compilation and simulation

d before, and offers customizable views on the analyzed

on three of the Omega case studies:
ase study (EADS), to statically validate the well-formedness
 prove 9 safety properties of the flight regulation and
ponents, and to analyze the schedulability under the

d priority pre-emptive scheduling policy.

 24

http://www-verimag.imag.fr/DIST_SYS/IF/IFx.html
http://www-verimag.imag.fr/DIST_SYS/IF/IFx.html

Omega IST-2001-33522 - Final Project Report

• On the MARS case study (NLR), to prove 4 safety properties and to discover
reactivity limits of some system components and fine-tune their behaviour in
order to improve reactivity. On this case study, we have also applied
compositional verification which is partly supported by the tool through the
existence of simulation checkers, minimization with respect to bisimulation and
abstraction.

• On the Sensor Voting an Monitoring case study (IAI), to prove 4 safety
properties and timing properties

The IF/IFx tool is freely distributed on the web (either through the Omega webpage
http://www-omega.imag.fr/tools.php or http://www-verimag.imag.fr/~async/IF/).

5.1.3 The LSC Play Engine
The LSC tools developed by WIS consist of a set of tool for specifying and executing
behavioural requirements by means of LSC, verifying an Omega UML model with
respect to LSC requirements and synthesizing statecharts from LSC. A more detailed
description of the tool can be found in [LSCuser04] and at
http://www.wisdom.weizmann.ac.il/%7Eplaybook/.

Play-In

The main idea of the play-in process is to allow requirements engineering at a high
level of abstraction, and to work with a look-alike version of the system under
development. This enables people who are unfamiliar with LSCs, or who do not want
to work with a formal language directly, to specify the behavioural requirements of a
system using a graphical interface and an interactive tool. These could include domain
experts, application engineers, requirements engineers and potential users.
Play-in means that the system developer first provides the static information of the
system (class diagram) and either builds a GUI of the system or uses a predefined one.
The user plays the GUI by clicking buttons, rotating knobs and sending messages
(representing operation calls and signals) to objects, similar to a user of the final
system. The user also describes the desired reactions of the system and the conditions
that may or must hold. The play-engine records this behaviour in the form of an LSC.
For this purpose, it queries the application GUI for its structure and interacts with it,
thus manipulating the information entered by the user.
Play-Out

One way of validating or testing requirements is by constructing a prototype intra-
object implementation and using model execution for this purpose. Instead, we provide
direct simulation, which we call play-out: the user plays the GUI application as he/she
would have done when executing a system model, or the final system, by restricting the
interactions to user and external environment actions. While doing this, the play-engine
keeps track of the actions and causes other actions and events to occur as dictated by
the universal charts. The engine traces these actions at the GUI level and thus gives the
user feedback on the system evolution. This process of the user operating the GUI
application and the play-engine causing it to react according to the LSCs has the effect
of working with an executable model, but with no intra-object model having to be built
or synthesized.

July 2005 25

http://www-omega.imag.fr/tools.php

Omega IST-2001-33522 - Final Project Report

This makes it easier to let also non software developers participate in the process of
debugging the requirements, since they do not need to know anything about the
implementation (or its specification). It yields requirements that are well tested, thus
lower probability of errors in later phases, which are a lot more expensive to detect and
eliminate. Notice that the behaviour played out is not only the one played in, but also
derived behaviours. Universal charts are used to drive the model, whereas existential
charts are used, similar to observers, to express properties or as examples of required
interactions and to monitor the system by tracking the events in the chart as they occur.
Smart Play-Out

Play-out is an iterative process, where after each step taken by the user, the play-engine
computes a super-step, which is a sequence of events carried out by the system as
response to the event input by the user. Due to the inherent concurrency, there can be
several sequences of events possible as a response to a user event, and some of these
may not constitute a correct super-step, that is, they may lead to the violation of some
active universal chart.
Smart play-out uses model-checking to find a correct super-step if one exists, or proves
that there is none. We do this by formulating play-out as a verification problem, in such
a way that a counter example resulting from the model-checking will constitute the
desired super-step. The transition relation is defined so that it allows progress of active
universal charts but prevents violations. The property to be checked is one that states
that always at least one of the universal charts is active. In order to falsify it, the model-
checker searches for a run in which eventually none of the universal charts is active;
i.e., all active universal charts completed successfully, and by the definition of the
transition relation no violations occurred. Such a counter-example is exactly the desired
super-step. If the model-checker manages to verify the property, then no correct super-
step exists.
Smart play-out can also verify the possibility to satisfy an existential chart. This cannot
be done by exploring a single super-step, since the chart under scrutiny can contain
external events, each of which triggers a super-step of the system. Nevertheless, the
formulation as a model-checking problem can be used with slight modifications. In this
case, we assume that we can choose the appropriate events of the environment.
Statechart Synthesis

A methodology for synthesizing statechart models from scenario-based requirements
has been developed. The requirements are given as LSCs. We have implemented our
algorithms as a part of the Play-Engine tool and the generated statechart model can then
be executed using existing UML case tools.
Due to the intrinsic complexity of this synthesis, we suggest a methodology that is not
fully automatic but relies on user interaction and expertise to make the synthesis more
efficient. In particular, we ask the requirements engineer to provide enough detail to
reduce the number of choices in the model to be synthesized. In fact, the algorithm tries
to prove, using the above mentioned verification methods, that some synthesized model
(by an extension of smart play-out) satisfies all requirements; if it manages to do so, the
synthesized model is a correct one. A major obstacle that requires additional research
efforts is the high computational complexity of the synthesis algorithms, preventing
scaling of the synthesis approaches to large systems.

July 2005 26

Omega IST-2001-33522 - Final Project Report

5.1.4 PVS based tools and methods
We have built a number of tools allowing the verification of UML/OCL specifications
with the help of theorem provers, mainly PVS. An overview on parts of the tool can be
found in [AHKPZ04, KFB*04]
SUML

We have implemented a tool that translates a subset of UML, in the XMI format, to the
input language of the theorem prover PVS [PVS]. To simplify this process, we use a
translation of two XMI dialects, namely the one of Rhapsody and the one of
ArgoUML, to an intermediate format, called SUML.
There is also a translator from SUML to PVS. The tools translating XMI to SUML and
PVS are available at http://homepages.cwi.nl/~jacob/uml2pvs.html.
OCL

The OCL Tool implements a translation of a subset of OCL constraints into the input
language of the theorem prover PVS via the SUML format.
In order to avoid implementing a three-valued logic within the framework of PVS, we
have defined a sound translation of OCL into a two-valued logic. The advantage is a
more direct representation of constraints in PVS. The disadvantage is that a set of
constraints, which are undefined in OCL, may be provable in PVS.
OCL is a three-valued logic, because the semantics was defined for an executable
language and not a logic. If the evaluation of an expression raises an exception or
diverges, then the constraint is considered to be undefined. However, such notions do
not exist in the declarative semantics of a logic. Finally, we are mostly interested in a
proof of a property, and for this an operational semantics of OCL is not relevant. As an
alternative, constraints can be specified directly in PVS. This also enables the use of
TLPVS (see below). The OCL tool is available at
 http://www.informatik.uni-kiel.de/~mky/omega/suml.html.
TLPVS

TLPVS is a PVS implementation of a linear temporal logic verification system that has
been further developed in Omega. The system includes a set of theories defining a
temporal logic, a number of proof rules for proving soundness and response properties,
and strategies which aid in conducting the proofs. In addition to implementing a
framework for existing rules, we have derived new methods which are particularly
useful in a deductive LTL system. A distributed rank rule for the verification of
response properties in parameterized systems is presented, and a methodology is
detailed for reducing strong fairness to weak fairness. Special attention has been paid to
the verification of systems with unbounded number of processes.
TLPVS is available at http://www.wisdom.weizmann.ac.il/~verify/tlpvs/. We also have
used it for some examples available at the same page.
Compositional verification

We have defined a general framework for supporting compositional verification using
the interactive theorem prover PVS. The focus is on the level of components, and we
have concentrated on parallel composition and hiding. The framework is based on
timed traces that are an abstraction of the timed semantics of the Omega kernel
language. So we abstract from all internal details such as internal objects and the values
of their attributes, and only record the current time of the configurations and the
external events of the labels. To be able to formalize intermediate stages during the top-

July 2005 27

http://homepages.cwi.nl/~jacob/uml2pvs.html
http://www.informatik.uni-kiel.de/%7Emky/omega/suml.html
http://www.wisdom.weizmann.ac.il/%7Everify/tlpvs/

Omega IST-2001-33522 - Final Project Report

down design of a system, we have constructed a framework where specifications and
programming constructs can be mixed freely. The semantics of parallel composition
and hiding has been defined in the PVS specification language. Compositional proof
rules for parallel composition and hiding have been formulated in PVS and the tool has
also been used to prove the soundness of these rules.
OAS

The OAS tool has been designed for experimental analysis of the abstract OMEGA
kernel model semantics.
The user provides a class diagram plus an object diagram representing the initial
configuration of the model to analyze. Furthermore, the user provides scripts that
define the operational semantics in the form of object diagram transformation rules.
The scripting language provides also means to describe how the choice amongst several
enabled rules is made.
An online version of the tool is available at
http://homepages.cwi.nl/~jacob/km/cgikm.html.

5.2 Overview on work on scheduling and coordination
In Omega, we have carried out a number of studies concerning scheduling and
coordination related issues and built tools for handling some of them. Some results
concern directly the developed UML profile, already described earlier, others are of
more general nature and can be applied to other frameworks.

5.2.1 Fundamental results
We have achieved results on a general framework for high level component
composition with the ultimate goal to achieve correctness by construction. We
developed a general framework for component composition where individual
components are composed using a high level concept of interaction and execution
modes or scheduling is expressed by means of dynamic priority rules. The framework
allows the definition of atomic interactions of any number of components, and contrary
to process algebra like rendez-vous, it foresees to either forbid any partial interactions –
as in process algebras – or to allow a subset of them which means that it can, amongst
others, it can explicitly handle “missed rendez-vous” which no other framework does in
a really satisfactory manner. The framework is compositional and allows incremental
construction and verification of systems. We hope that this allows the description of
system at a high level of abstraction, thus making verification a feasible goal.
Moreover, the fact that interactions themselves can be obtained by exchanges of values
amongst ports and the execution of actions of individual components in some order
provides a basis for constructing implementations of high level models in terms of
primitives available on usual platforms preserving liveness of the involved components.
We have developed a framework for the construction of systems with guaranteed
properties from components. Building a general framework for component composition
by preserving properties of components was one of the motivations at the basis of the
definition of the Omega. The results can be found in [GS03,GS04]. We have started to
implement the composition concept in a small prototype tool.

In OMEGA, we have also shown how to use a (subset) of UML as it is as a
coordination language that is based on binary interaction with a clear separation of

July 2005 28

http://homepages.cwi.nl/~jacob/km/cgikm.html

Omega IST-2001-33522 - Final Project Report

concerns between coordination and computation. The basic idea is to use UML as
formalism to specify the “glue code” in terms of state-machines which are added to the
classes of the underlying applications which only provide the implementation of the
primitive operations. The added state machines describe the coordination of these
primitive operations in terms of sending and receiving events. For example, a state
machine can be used to describe the dependency of the execution of a particular
primitive operation on the reception of a particular event (within a certain amount of
time). The results can be found for example in [GABB04].

We have studied the problem of architectures for adaptive scheduling, in particular how
to obtain safe schedulers taking into account Quality of Service attributes. The
continuation of this work goes beyond Omega, as it focuses on power and memory
management [KY03].

We have also studied particular frameworks in which the scheduling problem expressed
in terms of difference equations is decidable. This is motivated by the fact that our
validation tools for timed systems, Kronos [Yov97] and IF, use difference equations for
representing time constraints.

We have worked on scheduling frameworks and scheduler synthesis in collaboration
with Ametist IST project4. In fact, the partners implied in this work in Omega are also
partners of Ametist, where this problematic is a central issue: “the aim of Ametist is to
develop a powerful modelling methodology supported by efficient computerised
problem-solving tools for the modelling and analysis of complex, distributed real-time
systems. In particular, the project will address problems in connection with time-
dependent behaviour and dynamic resource allocation.” We therefore decided to join
forces.
Jointly, we have studied the problem of synthesis of optimal schedulers of acyclic
systems under different assumptions [AM03, AAM04,BKM04]. This is motivated by
the fact that many embedded systems are modelled as cyclic systems, where each cycle
can be considered as cycle free and where scheduling amounts basically schedule each
cycle. Under some conditions, these results can also be adapted to the case where there
are several "overlapping cycles" at any time, which is the more interesting case in the
context of asynchronous systems.

5.2.2 Applications
The main application handled in OMEGA was the schedulability analysis of the EADS
case study. It is an instance of the scheduling problem where the abstraction of the
system to a simple set of tasks with a worst case execution time is not sufficient. In
order to show the schedulability of the system, we had to consider the internal
workflow of each task as well as the evolution of the system over time, as over-
approximations over all periods lead the conclusion that the system is not schedulable,
whereas in fact, it is.

The work on the framework for composition has been used in the tools built in
OMEGA; in fact, it strongly influenced the introduction of dynamic priority as a
general means to express execution modes. In the context of a PhD thesis, we have

4 http://ametist.cs.utwente.nl/

July 2005 29

Omega IST-2001-33522 - Final Project Report

introduced an explicit notion of “resource” and means to express dynamic priority
rules in the IF language and studied the feasibility of scheduling analysis based on code
annotation including timing constraints and scheduling constraints expressed by
dynamic priorities has been experimented also in the context of multi-threaded real-
time Java applications. A tool, called Jedi [KNY03] has been implemented5 .

Two applications were done jointly with Ametist. We have used an extension of the IF
tool with (dynamic) cost functions associated with transitions to the problem of finding
an optimal schedule for the monthly production of lacquers on a given physical
production line. We have modelled individual workflows as processes with costs
associated with basic tasks and the physical installations as resources and obtained very
interesting results by using some optimality preserving heuristics [BM03].
Another case study was based on the use of LSC. Here the idea is to use a semi-
automatic strategy based on the use of the play-out engine. If the engine cannot find a
schedule automatically, based on output from the play-out engine, the user can refine
the set of constraints in order to make the problem easier to solve [KW04].

5.3 Interfaces provided and used by the toolset
In the Omega project, we have defined and used several interfaces for the exchange of
models. Moreover, the individual tools provide interfaces for connecting external tools
and sometimes use existing connections through these interfaces.

5.3.1 Common format for model representation
• All tools handle in principle the same models as they can be obtained by XMI

export from UML case tools using Omega extensions (tag values, stereotypes
and libraries), where in the project we have used Rhapsody and Rational Rose
mainly.

• Moreover, as XMI does not provide a structured representation of the action
language, we have developed an Omega Action Language (OMAL) that is
compatible with the UML action semantics.

• For the same reason, OCL is defined as a concrete syntax in accordance with
OCL 2.0. For the subset of OCL corresponding also to Boolean expressions of
the action language, also the syntax is the same. OCL is only used by the OCL
to PVS translator

• As the Meta-model for sequence diagrams of UML 1.4 was too weak for being
extended for the representation of Live Sequence Charts (LSC), an appropriate
XML format has been defined allowing us to share LSC amongst several tools.
This format is used to export LSC from the LSC tools to the UVE untimed
model-checking tools. There is currently no transformation of timed LSC into
the IFx tool for verification of time dependent models and properties.

• Moreover, a simplified XML format has been defined, back and forth
translatable with XMI, used by an XML based interpreter - used mainly for
semantic exploration - and as an intermediate format for the translation from
XMI into PVS.

• Omega XMI based model representation:
o XMI 1.0 for models developed in Rhapdosy, XMI 1.1 for models

developed in Rational Rose
o XMI includes textual actions in the Omega Action Langage

5 see also http://www-verimag.imag.fr/nakhli/jeditool/

July 2005 30

Omega IST-2001-33522 - Final Project Report

o OCL expressions are placed in a separate file, using context clauses
• SUML: The SUML (simple UML) format is a simplified XML representation

of UML models. There exist tools for the translation from XMI to SUML and
from SUML into PVS, using the package of PVS theories mentioned below.

• XML for LSC representation: An XML format has been jointly developed by
OFFIS and WIS and appears in deliverable D1.2.2bis. It has been implemented
in the LSC tool of OFFIS, whereas some additional implementation effort
remains to be done in Weizmann’s PlayEngine.

5.3.2 Additional interfaces provided

Interfaces of the IF/IFx tool. The IF tool provides three APIs:

• The Model API which gives access to the abstract syntax tree of an IF
specification and allows to write tools that process such specifications.
Examples of tools using this interface: the static analysis tools, the simulator
generator.
Using this API, IF is interfaced with other tools like: the TGV test generator, the
AMETIST mincost path extraction tool, other model checking tools (e.g., for µ-
calculus formulas).

• The Simulator API which gives access to the IF execution platform. It provides
functions like: driving a specification to the initial state, selecting / executing
transitions, dynamically inspecting IF objects (process instances, queues, etc.).
Based on this API, have been built the IFx interface as well as some other
connections to other high-level languages, such as SDL, and other UML
profiles. This interface could also allow with a relatively small effort to handle
heterogeneous models

• Finally a “step” API by which the simulator interacts with individual
components. This API can be used to integrate other component based
frameworks directly, without passing through IF as an action language. Today
this API is exploited for integration of external C or C++ code.

The integration of the UVE toolset in other tools was performed in the following
directions:

• Translation of a UML model into the XMI exchange format and XMI-based
verification

• LSC translation from and to the XML exchange format
• Integration into the commercial CASE-tool Rhapsody

5.4 References concerning verification methods and tools
[AHKPZ04] T. Arons, J. Hooman, H. Kugler, A. Pnueli, M. van der Zwaag

Deductive Verification of UML Models in TLPVS In Proceedings UML 2004
Springer-Verlag 2004

[AM03] Y. Abdeddaïm, E. Asarin, O. Maler On optimal scheduling under
uncertainty In Proceedings of TACAS 2003, Warsaw LNCS 2003

[AAM04] Y. Abdeddaïm, E. Asarin, O. Maler Scheduling with timed automata In
accepted to TCS 2004

July 2005 31

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AHKPZ-UML04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AbdeddaimAsarinMaler03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AbdeddaimAsarinMaler03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AbdeddaimAsarinMaler04

Omega IST-2001-33522 - Final Project Report

[BKM04] M. Bozga, A. Kerbaa, O. Maler Optimal Scheduling of Acyclic Branching
Programs on Parallel Machines In RTSS 2004

[BM03] M. Bozga, O. Maler Timed Automata Approach for the AXXOM Case Study,
Verimag, 2003

[BGM02] Marius Bozga, Susanne Graf, L. Mounier IF-2.0: A Validation
Environment for Component-Based Real-Time Systems In Proceedings of
Conference on Computer Aided Verification, CAV'02, Copenhagen LNCS
(2404) Springer Verlag June 2002

[BGOOS04] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, Joseph
Sifakis The IF toolset In SFM-04:RT 4th Int. School on Formal Methods for
the Design of Computer, Communication and Software Systems: Real Time
LNCS June 2004

[GS03] Gregor Gössler, Joseph Sifakis Component-based construction of deadlock-
free systems In proceedings of FSTTCS 2003, Mumbai, India LNCS 2914 2003

[GS04] Gregor Gössler, Joseph Sifakis Priority systems In proceedings of FMCO'03
LNCS 3188, 2004

[GH04] Susanne Graf, Jozef Hooman Correct Development of Embedded Systems
In European Workshop on Software Architecture: Languages, Styles, Models,
Tools, and Applications (EWSA 2004), co-located with ICSE 2004, St Andrews,
Scotland LNCS 3047 Springer-Verlag May 2004

[GABB04] J.V.Guillen Scholten, F. Arbab, F.S. de Boer, M. M. Bonsangue Mocha-
pi: an Exogenous Coordination Calculus based on Mobile Channels In
Proceedings of the 20th Annual ACM Symposium on Applied Computing (SAC
2005) ACM Press. Accepted for publication 2005

[KFB*04] Kyas, Marcel, Fecher, Harald, de Boer, Frank S., van der Zwaag, Mark,
Hooman, Jozef, Arons, Tamarah, Kugler, Hillel Formalizing UML Models
and OCL Constraints in PVS In Workshop on Semantic Foundations of
Engineering Design Languages Electronic Notes in Computer Science Elsevier
2004

[KNY03] Christos Kloukinas, Chaker Nakhli, Sergio Yovine A Methodology and
Tool Support for Generating Scheduled Native Code for Real-Time Java
Applications In EMSOFT 2003 LNCS vol. 2855 2003

[KY03] Christos Kloukinas, Sergio Yovine Synthesis of Safe, QoS Extendible,
Application Specific Schedulers for Heterogeneous Real-Time Systems In
Proceedings of the 15th Euromicro Conference on Real-Time Systems
(ECRTS'03) ISBN 0-7695-1936-9, 2003

[KW04] H. Kugler, G. Weiss Planning a production line with LSCs Weizmann
Institute (MCS04-05) 2004

[LSCuser04] D. Harel and R. Marelly, "Play-Engine User's Guide" Play-Book
[OGO05] Iulian Ober, Susanne Graf, Ileana Ober Validating timed UML models by

simulation and verification In Accepted for publication in STTT, Int. Journal
on Software Tools for Technology Transfer, 2004 Springer Verlag 2005

[STMW04] Ingo Schinz, Tobe Toben, Christian Mrugalla, Bernd Westphal The
Rhapsody UML Verification Environment In Proceedings of the 2nd
International Conference on Software Engineering and Formal Methods
(SEFM 2004) IEEE September 2004

[Yov97] S. Yovine Kronos: A verification tool for real-time systems In Springer
International Journal of Software Tools for Technology Transfer vol. 1 (1-2)
December 1997

July 2005 32

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaKerbaaMaler04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaKerbaaMaler04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Bozga-Maler-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaMounierGraf*CAV02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaMounierGraf*CAV02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaGrafOber*-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FSTTCS03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FSTTCS03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FMCO-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Hooman-EWSA-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GuillenArbab*-SAC2005
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GuillenArbab*-SAC2005
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas03:_formal_uml_models
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas03:_formal_uml_models
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasNakhliYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasNakhliYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasNakhliYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KuglerWeiss04
http://www.wisdom.weizmann.ac.il/%7Eplaybook/
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-umlif-sttt04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-umlif-sttt04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ruve2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ruve2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=references&key=kronos-sttt97

Omega IST-2001-33522 - Final Project Report

6 Experimental results: the OMEGA case studies
In order to evaluate the OMEGA project methods and techniques, as well as to provide
feedback to their development, four case studies apply these in the industrial context.
After specification of the case study UML models the OMEGA tools are being applied
to these models in order to investigate applicability, usability, scalability,
complementary use, and methodological aspects of the employment of these tools in
the industrial embedded real-time software development. An important requirement in
the Omega project was that industrial users do not only provide the case studies, but
also use and evaluate the developed tools from the point of view of an industrial user.
Thus, the main tool evaluation reported here has been driven by the users. After some
initial help with the use of the tools, the tool providers provided mainly methodological
guidelines whereas the validation activities were done by the users themselves.
In addition, all academic partners have cooperated in an evaluation experiment for one
of the case studies, reported in section 6.5, with the aim to show several uses of all the
developed tools in combination which included also some uses of the tools requiring a
good expertise in the possibilities of the tools and verification technology, whereas the
users mainly used the available push button features. Notice that in particular, the users
have not evaluated all the PVS based tools as for their use, important expertise in
theorem proving is needed.
Overall, the case studies played an important role for the success of the project in
demonstrating well the usefulness of the profile and tools developed by the project.
Presently, they play an important role for the promotion of the tools outside the project.
An overview on all case studies, providing a more detailed description can be found at
the Omega web page http://www-omega.imag.fr/cs/cs.php. Also the Deliverables
[M4.2] and [D4.5] contain more detailed descriptions of the experiments done by the
industrial partners.

6.1 Case study 1: Ariane-5 Flight programme
The EADS ST case study presents the Flight Software of the European Ariane 5
Launcher and focuses on relevant real time behaviours. An overview on a part of the
verification experiments can be found in [OGO05] and a report on earlier experiments
using an SDL model of the asynchronous behaviour can be found in [BGOOS04]

The objective of this Ariane 5 Flight Software is to control the launcher mission from
lift-off to payload release. This software operates in a completely automatic mode and
has to handle both the external disturbances and the hardware different failures that
may occur during the flight. This case study presents the most relevant points required
for such an embedded application and focuses on the real time critical behaviour.

EADS ST software merges in the same processor asynchronous behaviours (stage
ignition and release, failure isolation and recovery) and cyclical synchronous
behaviours (control/command of the vehicle, failure detection). The validation of the
asynchronous behaviour is mainly a vehicle system task, i.e., this task consists in
proving that the software specification is correct with respect to the vehicle definition
and that the real time constraints are coherent. The validation of the cyclic behaviour is
mainly a software design task, i.e. this task consists in proving that the real time
implementation of the software is correct, with respect to the multitasking architecture
chosen.

July 2005 33

http://www-omega.imag.fr/cs/cs.php

Omega IST-2001-33522 - Final Project Report

In the development planning, the specification verification comes of course before the
design verification. Moreover, the specification verification is easier to performed
(because less complex) than the design verification.
The evaluation of the tools has followed the process used in an operational
development:

• Development of the model (including environment assumption description).
• Syntax and semantics model checking.
• Model simulation on some nominal asynchronous selected scenarios.
• Model exhaustive proof on all the degraded and exotic asynchronous scenarios.
• Model simulation and proof on all the cyclical synchronous scenarios

Particularities and solutions

The main difficulty in this case study was the combination of cyclic and acyclic
behaviour, which leads to an explosion of the state space (caused by the execution of
several thousands of cycles along the lifetime of the acyclic behaviour which takes
around 1 hour). This has called to the application of some abstraction techniques:

• Properties of the acyclic part have been initially verified by abstracting away
the cyclic part manually.

• In order to verify properties which involved both the acyclic and the cyclic part,
we had to artificially reduce the duration of the mission from around 1h to
around 1 minute. However, the relevant behaviours of both parts are fully
preserved by this abstraction.

Another particular issue raised by the case study was the validation the scheduling
policy used by the launcher software, which is based on a fixed-priority preemptive
scheme. This has necessitated the construction of a model of the scheduler as well as
the capturing of scheduling objectives by UML observers.

Evaluation summary

EADS ST has developed its UML model under the Rational Rose tool and has then
used the IFx/IF tools (semantics checker, simulator, model-checker) for validating it.
The great strength of the used tools is their compatibility with the OMEGA semantics
and the fact that they take into account the real time behaviour. The compiler has
allowed us to obtain a model with a clean and well understood semantics, which is not
possible with the Rational Rose tool (which provides neither a syntax nor a semantic
checker). The simulator has powerful features (such as breakpoints, undo, redo,...) and
provides a complete visibility on the model under simulation. At the end of the process,
the model-checker has allowed us to verify exhaustively the properties which have
been previously partially validated by using the interactive simulator.
The simulator has allowed correcting several errors in the model (mainly unexpected
deadlocks) which have not been detected by manual revue. As the cost of a
specification error during the validation phase is very high, these techniques have
already proved their great interests.
All the properties have been exhaustively proven correct. The model-checker allows
increasing our confidence in the model.

July 2005 34

Omega IST-2001-33522 - Final Project Report

6.2 Case study 2: A Vote Monitor
The case study is a flight control mechanism that implements "sensor voting" and
"sensors monitoring" operations in a typical flight control system.

The main role of a Flight Control Computer of an aircraft is to implement control loops
based on computations of Command values to Servo actuators controlling the air
vehicle surfaces. These computations are parameterized by the actual values provided
periodically by different sensors installed in the air vehicle.
This system is critical and requires a very high reliability in presence of hardware
faults. For achieving this reliability, we realize the avionics system using a triple
redundancy of the different Sensors and Flight Control Computers.

The software installed in the Flight Control Computer has different modules. IAI case
study focuses on one of them: Voting And Monitoring. The role of this module is to:
• Provide persistent sensors values resulting from the sampling of 3 sensors
• Monitor the healthiness of the sensors, based on successive comparison of sensor

values
• Monitor the healthiness of the computers, based on successive comparison of the

produced command values
The environment of the “VotingAndMonitoring” module is described in Figure 3.

The actors for VotingAndMonitoring are:
• Sensors: three (identical) elements providing specific information needed by the

Flight Control loops: angles, velocities, accelerations, etc.

July 2005 35

Omega IST-2001-33522 - Final Project Report

• FC: software module, which gets sensors values and servo-actuators status as input
together with commands from the Pilot or the Controlling station. It implements
control loops and outputs Commands to servo-actuators

• Channels: two other computers; exchange with present Computer the computed
commands values

• Health System: software module which gather information on the good operation of
the avionics system and authorizes/forbids usage of the system components
especially sensors and computers

• RTC: Real-Time Clock; synchronizes the three computers and marks the beginning
of a new computation cycle.

Evaluation summary

On the basis of this case study, IAI has used and done some evaluation of three tools
developed in Omega. For this evaluation, the case study has been tailored:

Using Play Engine (Weizmann Institute)
The case study has been reduced and simplified for fitting the tool limitations
and the case study version that was used on the LSC Play engine consists of one
channel and three sensors.

Using RUVE (OFFIS)
In order to run the tool with our case study we needed to seriously simplify the
model and reduce it to only 4 statecharts and 12 classes focusing in this way on
the non real time issues in the model.

Using IF (Verimag)
With the IF tool, we wanted to verify time related properties of our case study.
In order to do so, we have modelled the timing aspects of the system with
Rational Rose, as the syntax checks of Rhapsody posed problems with the
export of the action language part and also with the timed annotations. The
model used for timed verification is based on the same state machines, but the
functionality (in particular the voting mechanism, including the health monitor)
has been omitted; on the other hand, all objects are active, and here we have
taken into account two CPUs.

The model was extended with timing specifications: we defined time triggered
actions and time consuming activities of variable duration.

Notice that the different models used with the three different tools could have been
automatically extracted from a common global model, but presently such extraction
functionalities are not (yet) implemented in the tools.

6.3 Case study 3: MARS system
The case study is the Medium Altitude Reconnaissance System (MARS), software that
controls a photo camera embedded in a fighter aircraft. The camera is aimed at the
ground surface and purpose of the system is to counteract the image quality degradation
caused by the forward motion of the aircraft, by dynamically controlling film
movement (during film exposure) and frame rate. The system controls these parameters
based on the current aircraft altitude and ground speed, which are acquired from two

July 2005 36

Omega IST-2001-33522 - Final Project Report

data streams providing altitude data and navigation data. Next to these exposure control
functions, the system annotates every frame with the aircraft position (navigational co-
ordinates) at the moment of the corresponding frame exposure.
The system also performs self health monitoring. It supervises the operational status of
the various MARS components (e.g. camera status, serial communication status, data
bus status, statuses of the hardware modules, etc.) and generates pilot alarms according
to the alarm processing logic.
The experiments with the OMEGA tools have concentrated on the self-monitoring
functions of the system.

Figure 4: Databus manager

DatabusManager

AltitudeData
Source

NavigationD
ataSource

DatabusCon
troller

MessageReceiver

ControllerMonitor
prevOK : Boolean
curOK : Boolean

The system performs asynchronous data acquisition from the avionics data bus (altitude
data and navigation data), while performing cyclical internal processing of the
hardware failure detection (data bus controller Built-In-Test status). The data bus status
monitoring functions involve functional as well as time-dependent system behaviour.
The system environment (namely the data bus controller and data sources) exhibits
non-deterministic functional and timing properties.

The case study objective with regard to the development approach was to evaluate the
possibility of analysis of the different aspects of the behaviour and properties of the
real-time software system model through application of several formal verification
techniques to the common model.
The case study objective with regard to modelling was to evaluate the efficient way of
high-level requirements modelling as well as use of the OMEGA UML for modelling
of non-deterministic and timing aspects. For the high-level requirements modelling the
use of LSCs was proposed. The case study evaluated the use of LSCs for the scenario-
based modelling and perspective of further use of the LSC models in the UML-based
development.

The verification and validation activities comprised application of the OMEGA tools to
the case study model in the series of verification experiments. The objective of these
experiments was to evaluate the following aspects of the application of the new
OMEGA technologies in the industrial context:

• relevance to the case study domain;
• applicability to the issues of the industrial software development;

July 2005 37

Omega IST-2001-33522 - Final Project Report

• usability in the industrial setting;
• OMEGA tools in the industrial software development lifecycle.

Three tools were employed in the scope of the case study. The LSC PlayEngine tool
(Weizmann Institute of Science) was used for the high-level scenario-based
requirements modelling and verification of the requirements model. The Rhapsody
UML Verification Environment (RUVE) tool (OFFIS) was used for untimed
verification of the case study UML model. The IF/IFx tool (VERIMAG) was used for
the timed verification of the timed version of the case study UML model, which made
use of the OMEGA UML time extensions.
Particularities and solutions

The most important issue of this case study was related to verification of the model
with non-deterministic environment. The main source of non-determinism lied in the
fact that the data sources were independent, unsynchronised, provided cyclical data
with non-deterministic timing jitter (bounded to ±10 ms), and had a possibility of non-
deterministic data loss. For the purpose of untimed verification the timing aspects were
abstracted to purely functional behaviour with the use of system execution step as a
relative discrete time measure, while data losses were made observable through
explicitly modelling them as non-deterministic “no data” messages. For the purpose of
timed verification explicit timed model with non-deterministic timed environment was
specified. Abstraction techniques were used to allow verification of separate timed
properties as enabling all the possible sources of non-determinism in the model led to
the state space explosion.
Evaluation summary

The UVE tool
An untimed version of the case study UML model has been developed in the Rhapsody
tool and verified with the UVE tool. The tool provides possibility to specify the non-
deterministic external stimuli to drive the system model behaviour. The tool allows
verification of safety and liveness properties of a UML model, and provides facilities to
specify assumptions on the model behaviour as well as on the environment (external
stimuli).
Several untimed properties, specified with the use of propositional logic expressions,
temporal logic patterns and LSCs, have been verified. For specification of complex
properties and assumptions combinations of several temporal logic patterns can be
employed (if LSC specifications are used the number of LSCs is in principle
unlimited). While the verification experiments could effectively use such specifications
for several properties, the limits of the reasonably practical tool use were reached on
several occasions.
During the high-level design phase design decisions impact all the subsequent
development phases in terms of safety and liveness properties, required sequencing of
internal and externally visible responses to the external environment stimuli. The
RUVE tool proved to be reasonably effective for the verification of high-level models,
or partial models of the critical system parts.

The IF/IFx tool:
A timed version of the UML model has been developed and verified with the IF/IFx
tool. The tool allows a more realistic modelling of time dependent behaviour in the
self-monitoring components, as well as a more explicit environment modelling. The

July 2005 38

Omega IST-2001-33522 - Final Project Report

latter is possible as the tool provides support for non-deterministic behaviour in a
closed UML model, including timing non-determinism.
Several timing properties have been specified and verified using observers. For
example, a typical property is the following: “If the DatabusController becomes non-
operational at time T and stays non-operational for more than 10 ms then the
MessageReceiver shall enter the state ControllerError by the time T+10 ms at the
latest.”
Observers proved to be a convenient and intuitive way to express properties. For
modelling complex properties, the use of parallel composition of several observers
based on shared attributes is possible and convenient.
Verification experiments were performed in several configurations: synchronised vs.
desynchronised data sources, deterministic vs. non-deterministic polling performed by
the ControllerMonitor, etc. We have thus been able to verify the model in realistic
conditions, but also to reach the limits of the verification tool (e.g. for desynchronized
data sources and deterministic polling).
During the high-level design phase design decisions are very sensitive with respect to
the system timing issues. The IF tool provided effective means for timed verification of
the abstracted simplified models, dedicated to the respective timed properties.

6.4 Case study 4: A service component based depannage system
The FTR&D application is a telecommunication service built on top of embedded
platform and service components. The complete application developed for Omega is a
service called Depannage. The Depannage service is related to a specific user need (the
subscriber): Medical and doctor, Fire brigade, car repairing, etc. It allows a user to call
for a Depannage with a specific number. The service invocation firstly asks for
authentication of the calling user, and then will search the calling location. Once the
calling location found, the service will search in a data base different numbers
corresponding to a provider of the requested Depannage as close as possible from the
location of the calling user. Then, the service will try to connect the calling user to one
of the numbers (in a sequential or parallel way). In no case, the calling user should be
connected to a secretariat or to a vocal box. The platform and service components
should be reusable for different service logics and therefore they are specified
independently of any embedding system. The communication and all these components
include time constraints.
FTR&D used during the project a set of techniques in order to build the application by
a step-by-step approach.

• First, we describe a high level specification of the service and component
behaviour, including the behaviour of the communication between these
components. This description includes timed constraints. Then the consistency of
this high level specification is validated with respect to end-to-end requirements.
This analysis is made with LSC, the Play Engine tool and simulation/animation.

• In a second step, model checking techniques are used with the Play Engine tool
in order to verify in a formal way some requirements. The Play Engine tool
allows verifying model with timed constraints, but it implies restrictions on the
model. Then, parts of the model are identified, focusing on complex and/or
critical behaviours.

• Once these first steps done, a more complete model (with all the potential
behaviours, including creation and destruction of objects) is elaborated using the

July 2005 39

Omega IST-2001-33522 - Final Project Report

Rose CASE tool. This model is then exported to the IF/IFx tool and it is validated
with respect to some requirements expressed by observers.

Evaluation Summary
Application of LSC and animation with the Play-Out Engine: The wish to specify
components in a reusable way involves that the component specification should be
done independently of any embedding architecture. Such specification should
correspond in universal LSC describing how the component will react to events coming
from its provided ports and how (and when) this component will act on its required
ports. For the system, the complete application, the specification should be enhanced by
universal LSCs describing the communications between these components. Such LSCs
could include time constraints and delays on the communication. The end-to-end
requirements are expressed by existential LSC and will be validated during the
simulation/animation of the model. The Figure 6-1 represents the communication
between two components.

Application of the Play Engine model checking to timed verification: The model
checking tool allows formally verifying the expressed requirements. In order to use the
model checking tool, some restrictions need to be made on the model: no symbolic
instances, only one parameter for each signal. We have also to restrict verification on
parts of the model in order to avoid state-explosion (explosion of the graph which is
enforced with time constraints). It means that we have to focus our work on the more
critical part of the behaviour. We want to verify that all possible executions of the
model satisfy the specified requirements. The smart Play-Out approach allows
executing all the execution paths and, during this execution, one searches for the
satisfaction of a property (an existential LSC). Using the smart Play-Out tool we have
to express a property violating the requirements, thus, the model is correct when the
property is not satisfied by the model. The kinds of requirements we want to verify are:
d1 ≤ Time_Duration ≤ d2, were Time_Duration is the end-to-end execution-time of
some service or sub-service.

Figure 6-1: Connectors with Time Constraints

The current version of the Play Engine tool, including time constraints, gives good
results. However, the tool should be improved for more practical use.

July 2005 40

Omega IST-2001-33522 - Final Project Report

Application of the IF/IFx tool for formal specification and verification of complete
systems. The objectives of our work with the IF/IFx tool was to make a formal
verification of a more complete model. The model developed here includes more
complex behaviours corresponding to the call termination. It involves the creation and
destruction of objects and more complex message exchange patterns. In this model, we
introduce also another behaviour that has not been completely described with the LSC
tool: the fact that several calls can be initiated in parallel in order to search the called
party. In this case, only the first party answering the call will be connected to the
calling party, all other initiated calls will be killed. We expressed some properties
expressing the correctness of the model with respect to the service requirements by
means of observers:

• If a call succeeds, all the other initiated calls are aborted.
• A call never succeeds to call the vocal box of a mobile phone.

We were very satisfied by the use of the OMEGA/IF approach for the modelling and
verification of our application. The main characteristics of telecommunication models
and their properties could easily be modelled: non determinism, different kinds of
message exchanges, time constraints and timers, etc. The verification techniques are
complete and efficient: simulation, exhaustive simulation and observer verification.
Also the user interface of the IF/IFx tool has good functionalities: it really allowed
understanding the behaviour of our system.

6.5 Case study 5: Compositional verification of the MARS case study
Finally, all tool providers have applied advanced verification techniques on the MARS
case study of section 6.3. The aim of this work was twofold. On one hand it was meant
to demonstrate some of the possibilities of the tools which have not been exploited by
the users – in particular the tools based on the use of the PVS theorem prover and the
different compositional verification methods. On the other hand, it should demonstrate
a development methodology taking into account the need of validation which moreover
demonstrates a combined use of all the different OMEGA tools. Some more details can
be found in the set of documents constituting deliverable D3.3, in particular the
documents [D3.3-I, D3.3-A1, D3.3-A2, D3.3-A42].
Here, we have considered mainly the bus manager module which has initially been
given as a single module and we have decomposed it in different ways so as to be able
to apply compositional verification and verification based on abstraction.
In this work we have concentrated on the MessageReceiver module which is the main
source of space explosion and a good candidate for further decomposition. The initial
version of the MessageReceiver defined by NLR is described by a single state machine
handling all incoming messages and changing status according the messages received
during the last three periods. Also, the descriptions for timed and untimed verification
were different.
We have experimented different decompositions:

• In all cases, we have introduced a “vertical” decomposition, leading to a
separate Receiver for each data source and an ErrorLogic module taking the
decision about the status change.

• In some cases, we have added a “horizontal” decomposition by further
decomposing each Receiver into modules for each of the three basic
functionalities of a receiver: detecting a valid period, detecting data / absence of
date and counting the number of consecutive data/nodata periods.

July 2005 41

Omega IST-2001-33522 - Final Project Report

In different experiments, we have used different decompositions.

The horizontal decomposition into (1) period detection (2) data / data-miss detection
and (3) message counter was used for compositional verification with the untimed
model-checker UVE. In this case the part (1) is always considered part of the
environment, and different hypotheses are used about the sequences data and data-miss
messages sent by the environment are used for verifying properties of the other
modules. The possibilities of the UVE tool do assumption commitment style reasoning,
by deriving properties by taking properties of input sequences as assumptions, has been
exploited here. Due to the restrictions of the Rhapsody tool – which does not allow to
specify an open system – this required quite some remodelling of the communication
model in order to keep the overhead small for adapting the model to different local
verifications.
The limitation of this untimed verification was mainly that it was hard to find untimed
properties which do not depend on assumptions on the environment, whereas in
principle, the system should work also in an unrestricted environment. In addition, the
union of the used restricted environments, in the form of regular properties, does not
cover the set of all reasonable environments.

Using the IF tool, we did not need any further horizontal decomposition as the main
source of state explosion was the number of non synchronized clocks. The verification
of a system with a single data source requires in all cases 2 such clocks and this
verification could be carried out without further reduction6. Each receiver handles all
issues mentioned above and sends in every period (at the point of time of data or data-
miss detection) the status of the last three periods to the ErrorLogic, which changes the
status depending on the information received from all Receivers.
The vertical decomposition has been used for compositional verification by abstracting
the behaviour of the other (or the set of other) receiver(s) to the noise that it represents
for the non abstracted part. Here, we could use a chaotic abstraction and still show the
desired properties concerning the concrete Receiver.

The verification using PVS is similar to the one using the UVE tool, but extended to the
timed case. Also the set of properties that can be used to express assumptions and
requirements is much richer.

Especially when considering the timed models, some of the decompositions and
optimizations, we came up with, turned out to be erroneous. These errors were always
easily detected using the explorative model-checker of IF. In some cases, we did not
need any further experiments to understand and fix the error, but in some cases, the
model checker turned also out to be a good tool to understand some errors by
experimenting with versions of the model where the time constraints in the model or in
the requirements were slightly modified.

6.6 References concerning the Case studies
[BGOOS04] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, Joseph

Sifakis The IF toolset In SFM-04:RT 4th Int. School on Formal Methods for
the Design of Computer, Communication and Software Systems: Real Time
LNCS June 2004

6 The size of the model is around 100 000 states which is unproblematic

July 2005 42

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaGrafOber*-04

Omega IST-2001-33522 - Final Project Report

[OGO05] Iulian Ober, Susanne Graf, Ileana Ober Validating timed UML models by
simulation and verification In Accepted for publication in STTT, Int. Journal
on Software Tools for Technology Transfer, Springer Verlag, 2005

[D3.3-I] Jozef Hooman, D3.3: General Methodology, Jan 2005
[D3.3-A1] Angelika Votintseva, D3.3, Annex 1: General methodology for untimed

verification, Jan. 2005
[D3.3-A2] Iulian Ober, D.3.3 Annex 2: Specification and verification of real-time

systems using the Omega real-time profile and the IFx verification tool, Jan.
2005

[D3.3-A42] Jozef Hooman and Marcel Kyas, D33 Annex42: Compositional
Verification of Timed Components using PVS, Jan. 2005

[M4.2] Pierre Combes, David Lesens, Yuri Yushtein, Meir Zenou: Preliminary
evaluation of the Case studies with the OMEGA tool set and future validation
plans, June 2004

[D4.5] Pierre Combes, David Lesens, Yuri Yushtein, Meir Zenou: Final evaluation
of the OMEGA tool set, Jan. 2005

7 Summary of results and achievements
The OMEGA project, which started in January 2002 and completed in February 2005
has achieved the following results:

• Defined a UML profile for real time, adapted for a wide class of real-time and
embedded systems and usable with the several main UML case tools used in
this domain. The profile covers a large subset of UML and has been extended
with missing features; it includes means for the modelling structure, behaviour
and requirements with time using operational, declarative and mixed
descriptions

• Adopted a common format for model representation based on the UML XMI
standard exported by CASE tools, defining a common syntax for the action
language and OCL and a particular XML format for the representation of LSC.

• Implemented a set of validation tools for models adopting the Omega profile
and the Omega model exchange format. Different tools address different aspects
of models; they cover requirements and design and architecture analysis,
verification of functional, coordination and timing properties. The developed
tools are either freely available for research activities or will made
commercially available in the future

• Developed verification methods adapted to the expressivity of the defined
profile combining different communication paradigms, object orientation,
functionality and time.

• Carried out a series of industrial case studies for validating the developed
profile, methods and tools.

• Contributed to the state-of-the art by developing several theories related to the
problematic of modelling and validation of real-time embedded systems.

• Published over 60 papers in conference proceeding and journals. In addition, a
special issue in the SoSym journal is planned which will present some of the
theoretical results of that project and also an overview on all the results of
Omega and presentations of the most interesting Omega case studies.

July 2005 43

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-umlif-sttt04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-umlif-sttt04
mailto:jozef.hooman@embeddedsystems.nl
http://www-omega.imag.fr/doc/d1000336_2/WP3-D33-336-V2-GeneralMethodology.pdf
mailto:angelika.votintseva@offis.de
http://www-omega.imag.fr/doc/d1000365_3/WP3-D33-365-V3-IFx-methodology.pdf
http://www-omega.imag.fr/doc/d1000365_3/WP3-D33-365-V3-IFx-methodology.pdf
http://www-omega.imag.fr/doc/d1000330_4/WP3-D33-330-V4-Annex42.pdf
http://www-omega.imag.fr/doc/d1000330_4/WP3-D33-330-V4-Annex42.pdf

Omega IST-2001-33522 - Final Project Report

• Initiated and/or organised 13 international conferences and workshops, mostly
with published proceedings, in particular the new series of symposia FMCO,
which has been organised 3 times, and the SVERTS workshop which has been
organised twice as a satellite event of the UML conference. We intend to
continue both series of events created as Omega initiatives, in slightly modified
settings.

The language and tool developments have been done jointly by all the academic
partners based on input and feedback from the users. Below, we provide for each result
the contributors:

• The main contributors to the Omega Kernel model and its semantics are OFFIS
and the Weizmann Institute. The final version has been obtained due to
numerous contributions by all academic partners.

• The main contributor of the Real time profile is Verimag taking into account
suggestions made by other partners.

• The main contributor for the definition of the Omega OCL profile is the
university of Kiel in collaboration with CWI and taking into account
suggestions by other academic partners

• The adaptation of LSC for the UML framework including the adaptation of the
real-time profile has been done by the Weizmann Institute.

• The Omega component model has been developed by CWI based on numerous
discussions amongst academic partners.

• The UVE tool for untimed verification, including the corresponding XMI
import, has been developed by OFFIS as an extension of their pre-existing
verification tool RUVE for the verification of Rhapsody models.

• The IFx tool for the verification timing properties, including the corresponding
XMI import, has been developed by Verimag as a front-end of their pre-existing
IF verification engine

• The LSC play Engine, including the corresponding XMI import, has been
developed by the Weizmann Institute based on a pre-existing version of that
tool.

• The package of tools enabling the verification by means of properties expressed
in OCL and a subset of the operational profile have been developed jointly by
the university of Kiel, the university of Nijmegen and CWI.

• The tools for manipulating and transforming XML documents have been
developed by CWI.

The experiments were coordinated by the industrial partners, EADS ST, NLR7, Israeli
Aircraft Industries and France Telecom R&D. Each partner providing a case study used
a subset of the tools in collaboration with the academic partners providing them. On
one case study, all academic partners collaborated on an effort showing how the tools
can be used in combination and how to provide a model more suited for compositional
verification.

The academic results of the project as well as the proceedings of organised events have
been published. The list of publications, providing also the information on the involved

7 During the first two years of the project; then, the NLR expert has continued his work as an employee
of the university of Kiel

July 2005 44

Omega IST-2001-33522 - Final Project Report

contributors, is provided as an Annex A of this document. All papers are available at
the Omega web page.

8 Lessons learned
The goal of the project was to allow a tighter integration of formal validation in a
model based software development process of real-time and embedded systems. We
have chosen UML and existing UML based CASE tools as the framework for
providing such an integration.

The industrial experiments show that the outcome of the project is very positive, both,
concerning the developed UML profile and the developed tools, encouraging us to
continue the work started in Omega. Nevertheless, the case studies, as well as the
difficulties encountered during the project, show also that there is still a long way to go
for the existing tools to provide a model based development framework fully
integrating validation techniques at all development steps. A lot remains to be done for
our tools which lack still many of desirable and necessary features, but also UML or in
general model based development in its generality, is still an emerging and heavily
evolving, and not a mature technology.

Some things have changed during the duration of the project, and not always as we
expected. We anticipated UML 2.0, and in fact, the finally adopted version
corresponded quite well to our expectations, but it took more time than anticipated, and
there exist still no “real” UML 2.0 tools today.

Concerning tool integration, we did not consider the integration of our tools into a
particular CASE tool or development framework, as we aimed to be open for different
frameworks, which motivated also the choice of a kernel UML accepted by several
tools. We still think that this choice was the right one, even if it has some drawbacks, in
particular the one that it cannot be used smoothly without further adaptation with any
existing UML tool providing simulation facilities. The UVE tool by OFFIS provides a
version for Rhapsody users, by nevertheless abandoning some of the features of the
profile.

UML profile and semantics

The concepts covered by the profile turn out to be a good choice. We have privileged
extensions of notations already familiar to the users: in the operational kernel model,
the concepts covered are those chosen in the Rhapsody profile and existing in the same
or a similar form also in other tools (such as Rose Real-time or Telelogic TAU tool)
and formalisms (such as SDL). Similarly, for the interpretation of the concepts, we
have chosen a usual interpretation or a more non deterministic one, more in line with a
modelling language. Especially the users familiar with the Rhapsody tool did not
always easily accept any changes with respect to the Rhapsody profile, even in cases
where the Omega solutions had some objective advantages. Our experience should be
taken into account by other projects, proposing new solutions and aiming for user
acceptance.
Indeed, we had initially much more innovation in mind with respect to the concepts
covered by UML 1.4, especially for the notations going beyond the operational kernel
model. The main blocking factor were the concepts handled by the editors of the

July 2005 45

Omega IST-2001-33522 - Final Project Report

existing UML tools as our aim was not to work on UML graphical editors, but to build
on the existing ones.
For the extension of sequence diagrams in the form of LSC, we could rely on editor,
already under development at Weizmann Institute which allowed the introduction of
interesting concepts not covered by UML sequence diagrams. The existence of this
editing tool together with a tool implementing several analysis techniques contributed
to a good user acceptance, together with expressivity and intuitivity of the proposed
formalism.
Concerning architecture and component related concepts, we proposed the use of
stereotyped class diagrams and additional OCL constraints. Unfortunately, it turned out
that this kind of extensions were not really accepted by the users, partly because they
preferred graphical notations, and partly because the only tool supporting these
concepts required the use of the interactive theorem prover PVS.
With timing extensions we made a similar experience: it turned out that the best option
was to propose a small set of basic constructs (in our case timers clocks and semantic
level events) and integrating them into (extensions of) the existing notations rather than
defining a small OCL like language for the expression of dynamic timing properties.
The concepts provided in the form of tag values in the SPT profile, can then be
obtained as derived concepts, and could even be user defined. This, and the existing
tool support for simulation and model-checking lead to a good user acceptance.

An aim of the project was also to define an unambiguous semantics implemented by all
tools. From earlier experience, we knew from the beginning of the project that this
constitutes a real challenge for such a rich set of notations with many semantic
variation points, which should be handled consistently by several tools. We succeeded
in partially handling the issue by the fact that many, but the most central concepts were
handled by a single tool. Nevertheless, handling semantic issues represented much
more effort than initially anticipated, and yet we have not fully achieved the initial
goal. A detailed discussion of the difficulties encountered and approaches followed in
the project, which might be useful for future projects, can be found in section 4.2.
What became clear, is that the so called model based development approach, based on
the existence of a meta-model, supports syntactic transformations, but does not
presently provide any help for alleviating our problems with dynamic semantics; it
rather handles this problem by just ignoring it.

Building tools for UML

Concerning the XMI exchange format, the experience we had shows both positive and
negative aspects.
On the positive side, XMI has, albeit with a lot of effort, allowed us in the end to use
UML models edited with real industrial tools. If flexible enough, a tool is able to
encompass the differences between versions of XMI generated by different tools (XMI
1.0 for Rhapsody, XMI 1.1 for Rational Rose).
On the negative side, the XMI format is very complex and contains a lot of useless
information. Moreover, even for a same XML schema, interpretation about where (i.e.
in what XML element) to put a certain information may vary from one tool to another.
In the project, these negative aspects have triggered the work on a simplified version of
XMI (SUML).

July 2005 46

Omega IST-2001-33522 - Final Project Report

For these reasons, we think that using XMI as an exchange format was the right thing
to do but there is a real need in the UML community for developing re-usable XMI
parsers in order to share the big development effort which is implied.

Tool evaluation

We consider that the applied tool evaluation strategy, which is not a completely
standard one, had many very positive effects. The fact that the users did not just bring
the case study, but did the main work on them by using the tools developed in the
project, gives a much stronger value to the final tool evaluation than in the usual
situation, where the tool developers themselves demonstrate the potentialities of their
tools. This was also much more profitable for the users as they got a much deeper
personal involvement with the tools. Obviously, this lead to a much more critical
evaluation, because this did not allow to hide all the details still to be worked out; it
also showed clearly which kind of tools have a chance to be used in industry – in the
context aimed by the all the users – and which kind of tools are limited to a much more
specialized user community, which may also include specialists from industry. We
believe that this procedure had also the very positive effect of increasing the chances of
future collaborations and usages of the tools, and this despite the fact that the tools
became fully available, relatively late in the project.
Finally, the relatively tight interactions between users and tool providers, was an
important factor for the building of an “OMEGA team”.

8.1 What would we do the same? What different?
If we had to do it again, with all the experience gained and taking into account the
evolution outside the project into account, what would we repeat, what would we do
differently? We have tried to summarize the main issues in the following table.

Wha What would we repeat? t would we do differently?
Mod
ap
pro
co
too
in

Mod g
tod
of
to conveniently treat aspects left aside in
Om

elling language: we based our
proach on UML and defined a rich
file for real-time embedded systems

mpatible with the relevant CASE
ls. This was certainly a wise decision
terms of industry acceptance.

elling language: obviously, startin
ay, we would chose UML 2.0 instead
UML 1.4 which would allow us also

ega.

UM ntrary to most
approaches for verification in the context
of U e,
inc e
use
use ss.
Th
harder, but it was the decision to be
tak
Th
ad
mo s of the

UML profile: we have not taken into
account all important user requirements,
in pa
modelling of architecture constraints and
the
synchronous parts directly. Both, the
ev ental
res
would help us to address these issues in a
more straight forward manner, when
sta

L profile: co

ML, we have chosen a rich profil
luding most of the concepts that th
rs expect in the modelling language
d in the system development proce
is decision made our live much

en for being accepted by the users.
e Timing extensions and the
aptation of LSC for requirements
delling are great achievement

rticular those concerning the

 possibility to model designs with

olutions of UML and the fundam
earch we made during the project,

rting today.

July 2005 47

Omega IST-2001-33522 - Final Project Report

project.
In
ma
and tools independently of a particular
fram
de
sev
We think that this was a good choice as
it g
the
wa ble with the main
tools, we could deviate where this
seem

Integration with CASE tools: the
independence of the CASE tools has an
obvious reverse side. Our verification
resul
sim
(w
an
wh
wi
generally, the industrialisation of the
Om
im

tegration with CASE tools: we have
de the choice to develop a framework

ework as such important tool
velopment should be sharable by
eral CASE tools for a given profile.

ave as more freedom when defining
 profile. Even if the general approach
s to be compati

ed preferable to us.

ts are not compatible with the
ulators provided by the case tools

here they exist). Adapting our tools
d profile to particular tools, is work
ich should start now in collaboration
th the CASE tool providers. More

ega tools remains a major issue to be
proved on.

To
va
int
UM d
pro
We still think that this is a sound
appr
ev
wi
Bu t
of
CAS
for
de

To
all
rep
UML/LSC level models which can be
shared today, it would be interesting to
have an intermediate level format
repre
all C,
tem
act
ma o
de
for

ol integration: we have built a set of
lidation tools based on a light-weight
egration through sharing the same

L profile and formats for models an
perties.

oach as it allows different tools to
olve or even die independently
thout breaking the rest.
t on the other hand, from a user poin
view an integration in a commercial

E-tool is required to be acceptable
 industrial usage. The RUVE tool has
monstrated this approach.

ol integration: we have not explored
 possibilities to share model
resentations. In addition to the

senting communicating automata
owing to handle state machines, LS
poral properties, and why not also

ivity diagrams, in a more uniform
nner. In future projects, we plan t

velop a semantic level tool exchange
mat.

Ap e have
ident
de
pro
po
for
ab odology have led to
pictures about the tool set and relations
between tools, to an investigation of the
pro
Om enarios
of possible uses of the tools. To get more
ins ion
of tools, we have defined a common case
stu e
co
the
ins

Ap
ph
qu
an
no
Looking back, it was also not so clear
that the work on methodology could play
an important role in clarifying the overall
visio
be
pro
sch
be
co

proach to methodology: w
ified the general activities during

velopment, a basic development
cess, and investigated the

ssibilities to support this process by
mal methods. Moreover, discussions
out the meth

blems addressed, a vision on the
ega solutions, and finally, sc

ight in the relation and combinat

dy. In general, these activities hav
ntributed to the global coherence of
 project and led to interesting
ights.

proach to methodology: in the early
ases of the project most partners were
ite busy with semantics, tool support
d modelling case studies, so there was
t so much attention to methodology.

n of the project and the relations
tween the tools. Hence, in a future
ject, the activities should be
eduled earlier. In particular, it would

 beneficial to define at least a small
mmon case study much earlier.

Ap
tha
and the tool evaluation has been done by

 proach to tool evaluation: The fact
t the main work on the case studies

July 2005 48

Omega IST-2001-33522 - Final Project Report

the users – in frequent interaction with
the
po
for

 tool providers – was extremely
sitive and could serve as an example
 future projects

9
This section describes both direct exploitation plans as well as some future research
direct ne in OMEGA. Some of these plans have
alread ore preliminary phase8.
The f egories, plans with respect to the developed
profil the developed methods and tools and “other
plans” ature as well as plans aiming to cover a larger
part o

9.1 Profile and semantics
he parts of the profile that turned out to be most useful will be maintained in the tools,

the ith tool providers are planned trying to push some
, and some activities will take place to influence the

CL)

ed the standard UML 2.0
• Some of the proposals in the time extension have influenced the Call for

rsion of the real-time profile. We intend to push Omega

s and one concerning a

We ant
for UM
be abl
prescriptions than earlier versions, but not for all concepts, and moreover, the variety of

 Plans for the future

ions, taking their root in work do
y started to be realized, whereas others are still in a m
uture plans are divided into three cat
e and semantics, plans with respect to
 including those of more general n
f the development process.

T
fur r developed. Collaborations w
of the ideas into existing case tools
standard9. Notice that the principal exploitation of the profile is by the usage in tools. A
profile is alive and useful mainly in combination with the tools that are exploiting it.
All parts of the profile (the operational part, time extensions, observers, LSC and O
are already and will continue to be disseminated in publications, on websites and also
in future collaborations of the partners. In the first part of this section, we mention
precise relatively short term exploitation plans of the partners.

• LSC have already influenc

Request for the next ve
time extensions (mainly the event matching mechanisms) and the notion of
observers in the next version by joining a consortium in the context of the
ARTIST NoE.

• In the context of the French PERSIFORM project involving the Omega partners
France Telecom and Verimag, we will extend the profile for including activity
diagrams both as operational specifications and observers.

• In the framework of Artist and forthcoming national projects, Verimag will
participate in the responses to some of the current RfPs of OMG, one
concerning a profile for real-time and embedded system
semantic profile.

icipate that there will probably never be an unambiguous semantic prescription
L defined by the standard, simply because the different involved parties will not

e to agree on such a unique interpretation. UML 2.0 has more semantic

8 Notice that, depending on their policies, some partners did want to reveal all of their exploitation plans
in this report which is a public document.
9 Notice that an academic partner alone has almost no chance to obtain anything at OMG and moreover
this extremely time consuming activity is barely compatible with the obligations of academics. So the
reasonable solution is to join a consortium, which we have done in the past and will do in the future.

July 2005 49

Omega IST-2001-33522 - Final Project Report

pro s
tendenc

• mantic choices for a

• A second consequence for tools is that either, they must be open to new

 the profile so that the

The sc
well as
applied to practical case studies. One open issue is here to provide a more flexible
inte
is an ex
right, d
We ha
kernel,
in whic
larger s
Three O ect.

 machines. The remaining issues

 of the
ols plans for commercialization or integration in a commercial tool chains are being

file adopted by different tools is not likely to disappear. There is even some
y towards domain and application specific languages.
A first consequence is that tools must be open to several se
given set of concepts. In the project, we have identified a number of interesting
semantic variation points and their variations. It would be interesting to deepen
this issue in order get the right flexibility for the kind of analysis provided by
each tool.

concepts – which may be easy in some cases but lead to important changes in
others – or one has to better take into account the fact that tools may not handle
a profile in its totality. We have already done this in Omega, but mainly by big
categories. In the future, more effort should be made in handling properly the
concepts of a profile not covered by a tool, and also in identifying the
constraints that have to be imposed on the usage of
analysis on the abstracted model carries over to the concrete model.

ientific results obtained concerning coordination and scheduling frameworks, as
 the early prototype tools developed in the project, will be further developed and

gration between the synchronous and the asynchronous parts of the system, which
plicit request by the users. One of the challenges is to get the abstraction level

epending on the properties under verification.
ve concrete plans for exploiting these results for defining a small semantic
 for UML and other modelling formalisms. This will be done in a future project,
h we aim at an even larger integration of design formalisms and tools, on a
pectrum of non functional features and on more lightweight, scalable analysis.
mega partners, IAI, OFFIS and Verimag will be partners of this proj

The experience obtained in this project demonstrated that a language like OCL will
only be accepted if the language is properly supported in case tools. While OCL
constraints are not as appealing as notations like LSC its declarative nature has many
advantages. The group from Kiel will research trace based specification languages for
object-oriented systems, based on OCL like notations, and its combination with
graphical notations, similar to UML 2.0 protocol state
are how one has to deal with the dynamic evolution of object structures in such
notations, especially with object creation, in a compositional setting.

9.2 Methods and Tools
All the tools developed in OMEGA are available, and can be used. For some
to
put up. Several projects have started or are in a planning phase where Omega tools will
play an important role.

• The Omega webpage http://www-omega.imag.fr/tools.php/ provides an
overview on all tools and case study results as well as links to the webpages of
the individual tools which are maintained by the developer of each tool.

• There are advanced plans for providing in collaboration with I-logix and other
Omega partners, the three main tools developed in the project, that is the UVE
tool, the Play-engine and the IF verification tool as Rhapsody plug-ins.

July 2005 50

Omega IST-2001-33522 - Final Project Report

The following plans concern uses and further developments of individual tools.

ogical modelling, a joint research effort of the Weizmann

•
rsities.

UVE tool

ational
research projects. It will be used for the verification of case studies and for the

n of model-checking methods over UML models. Among others, the

• idered to identify a

• OFFIS’ aim is to put its tools to the market. As a non-profit organisation this
t be done by OFFIS itself. Due to that, a spin-off company has been

t expectations and the willing of a possible tool

IF/IF

•

 plan to have the
UML part as close ads possible to the Omega profile. In this context, we will

 also in order to verify product lines obtained from UML component

Play Engine
• The Play-Engine and research done in OMEGA will be applied in the future to

research on biol
Institute with scientific collaborators at Yale and NYU.
The Play-Engine is currently been used for educational purposes in university
courses in the Weizmann Institute, New York University and other unive
It will also be a basis for research efforts at the Weizmann Institute and
applications in cooperation with industrial partners.

• The UVE tool will be used and improved in other national and intern

evaluatio
following already running projects will use UVE: ARTIST2, OPRAIL,
AVACS, (possibly EASIS).
In the national project OPRAIL the UML profile is recons
UML subset which can be used in safety critical rail systems applications and
which is in compliance with the CENELEC requirements regarding SIL3 and
SIL4 applications. Based on that profile an adaptation of the UVE tool will be
provided.

canno
funded some years ago which has already commercialized some prototype tools
developed by OFFIS within EU-funded projects.
Regarding the RUVE tool, we think that some additional improvements are
necessary before such a step will be possible. Nevertheless, a productization
depends also on the marke
vendor to put the tool on the market. OFFIS is permanently in contact with
possible vendors and hence OFFIS is confident that a commercialization will be
achieved if an acceptable maturity level of the tool is reached.

x tool
• A common exploitation of the IFx and IF tools between Verimag and France

Telecom is planned in the recently started French RNRT project PERSIFORM,
where connections with commercial performance evaluation tools, mainly SES
workbench, extensions of the profile to cover activity diagrams and another
view on the passage between the service point of view and the component point
of view are planned.
A common exploitation of the IFx tool between Verimag and EADS is planned
in the context of the recently started ASSERT IP. The Omega profile could be
used for an initial modelling of the EADS case study – probably from the
context of ATV – a AADL/UML profile is planned where we

use IFx
depositories using inheritance.

July 2005 51

Omega IST-2001-33522 - Final Project Report

•

 effort between IAI, I-Logix and Verimag.

OCL
● W

i uage accepted to UML 2.0, supporting larger
s
a

● T include more
a
p
c ation of
techniques, including static analysis techniques and model checkers.

n made available under the terms of the General Public

Gener
Sin
which
Unfor
Notice
tools i e existence
of
will al
We pl preparing
everal project proposals for this. We have already started to provide a meta-model for

guage compatible with Eclipse; this should allow us to ease future mappings

ng a period of at

cular the groups from OFFIS and University of
Nijmegen will incorporate the knowledge obtained and the tools developed into
their courses on embedded systems

At a relatively short term, we plan an integration of the timing extensions and
the IF validation facilities as a plug-in into Rhapsody. This integration is
planned as a common

• An adaptation of IFx to a UML profile for SoC will be used in a project
initiated by the French Rhone-Alpes region, for the verification of the
asynchronous parts (protocol layer) of a Network on Chip architecture.

 and PVS Based Tools
e plan to extend the OCL and PVS based tools in different directions. This

ncludes moving the input lang
ubsets of these languages, like hierarchical state machines, and improve the
ssertion language to cover common idioms in a more convenient manner.
he modular design of the OCL and PVS based tool allows to
nalysis phases and translations to other tools. CAU is interested in supporting
rovers which allow a higher degree of automation, aiming for a subset of
onstraints which can be checked automatically. This involves a combin

● The OCL tools have bee
License (GPL). Kiel plans to move the code base to a public CVS repository and
invite interested parties to participate in the development of the tools.

al
ce the termination of the project, UML tools have been integrated in Eclipse10,

 makes now this environment very attractive for the OMEGA tools.
tunately, this was not yet the case during the project.
 however that all these tools are based on UML 2.0, which means porting Omega
nto this requirement requires some adaptation effort. Nevertheless, th

UML 2.0 environments opens also several interesting perspectives; in particular, it
low us to better take into account architecture and components.
an to port several Omega tools into this environment and are currently

s
the IF lan
from UML to IF by using rule-based transformation languages as they have been
developed in or outside OMEGA.

9.3 Other plans`
• The OMEGA webpage will be maintained and improved duri

least 12 months and it will then remain available for at least another 5 years or
until obsolete.

• The Omega initiated workshop SVERTS and the Omega initiated symposium
series FMCO will be continued on an annual basis

• Several partners, in parti

10 In particular the commercial tool RSA from Rhapsody as well as some opensource tools, like Omondo
and others currently under development in different projects

July 2005 52

Omega IST-2001-33522 - Final Project Report

• The users, in particular EADS and IAI have already started to promote the

•
and Play-Engine).

work on the coupling between UML-based

• t case

ll investigate with Jan Tretmans at Nijmegen

•

•
statema
subset.
Du
sem t
more features of Java, and extend thes

Omega results internally, where the case studies play an important role.
IAI will perform a follow-up of the progress in the maturity of some Omega
tools (IF, UVE

• EADS foresees further presentations of the tools (UML and IFx), but for take-
up of results commercial tools are a condition

• The partners from University of Nijmegen intend to reuse the work and
experience from Omega in a project at the Embedded Systems Institute which
aims at extending and applying the
CASE tools and Mathlab/Simulink
Two partners consider the combination of existing automatic tes
generation methods with the work done in Omega:

o University of Nijmegen wi
and ASML, the possibilities to start a project on test case generation
from UML models, based on the Omega semantics.

o Verimag envisages a more user friendly integration with UML and IFx
of the TGV tool for test case generation, which can already today be
used as a backend of the IF tool.

CWI will continue working on compositional theories for UML models and on
high-level object-oriented scripting languages for the simulation of UML
models.
University of Kiel has started to implement an SOS based semantics of UML2.0

chines in the rewrite engine Maude allowing already handling a large
 This effort will be continued. Furthermore, in a continuation of the

tch-German bilateral research project Mobi-J, it will extend its results on the
an ics, specification, and verification of concurrent Java programs to cover

e results to a wider range of object-
oriented languages.

July 2005 53

Omega IST-2001-33522 - Final Project Report

10 Annex A: List of project publications
We provide here all papers based on Omega results published so far. We expect some
more publications concerning the work done in the last period of the project,
concerning mainly tools and case studies.

2005
Omega Publications

1. Werner Damm, Bernhard Josko, Amir Pnueli, Angelika Votintseva A discrete-
time UML semantics for concurrency and communication in safety-critical
applications In Science of Computer Programming 2005

2. Susanne Graf, Ileana Ober, Iulian Ober Timed annotations in UML accepted to
STTT, Int. Journal on Software Tools for Technology Transfer Springer Verl. 2005

3. Iulian Ober, Susanne Graf, Ileana Ober Validating timed UML models by
simulation and verification In Accepted for publication in STTT, Int. Journal on
Software Tools for Technology Transfer, 2004 Springer Verlag 2005

4. Zanconi, Marcelo, Yovine, Sergio Modeling and Analysis of Real Time Systems
with Preemption, Uncertainty, and Dependency Verimag (TR-2005-1) January
2005

5. D. Harel, H. Kugler, A. Pnueli Synthesis Revisited: Generating Statechart Models
from Scenarios-Based Requirements In Formal Methods in Software and System
Modeling, Lect. Notes in Comp. Sci. vol. 3393 Springer-Verlag 2005

6. D. Harel, H. Kugler, G. Weiss Some Methodological Observations Resulting from
Experience Using LSCs and the Play-In/Play-Out Approach In Proc. Scenarios:
Models, Algorithms and Tools Lect. Notes in Comp. Sci. vol. Springer-Verlag 2005

7. Jozef Hooman and Mark van der Zwaag. A Semantics of Communicating
Reactive Objects with Timing, Accepted for STTT, journal on Software Tools for
Technology Transfer, 2005

8. H. Kugler, D. Harel, A. Pnueli, Y. Lu, Y. Bontemps Temporal Logic for
Scenario-Based Specifications In (Eds.) Proc. 11th Intl. Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS'05), Lect. Notes
in Comp. Sci. vol. Springer-Verlag 2005

9. J.V.Guillen Scholten, F. Arbab, F.S. de Boer, M. M. Bonsangue Mocha-pi: an
Exogenous Coordination Calculus based on Mobile Channels In Proceedings of the
20th Annual ACM Symposium on Applied Computing (SAC 2005) ACM Press.
Accepted for publication 2005

10. Marcel Kyas An extended type system for OCL supporting templates and
transformations. In Proceedings of Formal Methods for Open Object-based
Distributed Systems. Accepted for publication. 2005

Related work, continuation of work in Omega

11. I. Crnkovic, J. Axelsson, S. Graf, M. Larsson, R. van Ommering, K. Wallnau
COTS component based embedded systems - a dream or reality ? In A Panel
organised at the Conference on COTS-Based Software Systems, ICCBSS 2005 in
Bilbao, Spain LNCS 3412 2005

12. H. Kugler, D. Harel, A. Pnueli, Y. Lu, Y. Bontemps Temporal Logic for
Scenario-Based Specifications In (Eds.) Proc. 11th Intl. Conference on Tools and

July 2005 54

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Damm*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Damm*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Damm*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GrafOber-umltime-sttt04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-umlif-sttt04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-umlif-sttt04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ZanconiYovine-2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ZanconiYovine-2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerPnueli05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerPnueli05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerWeiss05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerWeiss05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KuglerHarelPnueli*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KuglerHarelPnueli*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GuillenArbab*-SAC2005
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GuillenArbab*-SAC2005
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Crnkovic*2005
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KuglerHarelPnueli*05
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KuglerHarelPnueli*05

Omega IST-2001-33522 - Final Project Report

Algorithms for the Construction and Analysis of Systems (TACAS'05), Lect. Notes
in Comp. Sci. vol. Springer-Verlag 2005

2004
Omega Publications

1. Werner Damm, Bernd Westphal Live and let die: LSC based verification of
UML models In Science of Computer Programming 2004

2. F.S. de Boer, M. Kyas, W.-P. de Roever Compositional Verification of Object
Creation with Interface Invariants being submitted

3. Marcel Kyas A Compositional Proof of the Sieve of Eratosthenes in PVS ificau
2004

4. Marcel Kyas, Harald Fecher An Extended Type System for OCL supporting
Templates and Transformations In Submitted for publication. 2004

5. Kyas, Marcel, Fecher, Harald, de Boer, Frank S., van der Zwaag, Mark,
Hooman, Jozef, Arons, Tamarah, Kugler, Hillel Formalizing UML Models and
OCL Constraints in PVS In Workshop on Semantic Foundations of Engineering
Design Languages Electronic Notes in Computer Science Elsevier 2004

6. Kyas, Marcel, de Boer, Frank S. On Message Specification in OCL In de Boer,
Frank S., Bonsangue, Marcello (Eds.) Compositional Verification in UML ENTCS
vol. 101 Elsevier 2004

7. Iulian Ober, Susanne Graf, Ileana Ober Validation of UML Models via a
Mapping to Communicating Extended Timed Automata In 11th International SPIN
Workshop on Model Checking of Software, 2004 vol. LNCS 2989, 2004

8. Gregor Gössler, Joseph Sifakis Priority systems In proceedings of FMCO'03
LNCS 3188 2004

9. Y. Abdeddaïm, E. Asarin, O. Maler Scheduling with timed automata. accepted to
TCS 2004

10. M. Bozga, A. Kerbaa, O. Maler Optimal Scheduling of Acyclic Branching
Programs on Parallel Machines In RTSS 2004

11. H. Kugler, G. Weiss Planning a production line with LSCs Weizmann Institute
(MCS04-05) 2004

12. Susanne Graf, Jozef Hooman Correct Development of Embedded Systems In
European Workshop on Software Architecture: Languages, Styles, Models, Tools,
and Applications (EWSA 2004), co-located with ICSE 2004, St Andrews, Scotland
LNCS 3047 Springer-Verlag May 2004

13. Susanne Graf, Ileana Ober How useful is the UML real-time profile SPT without
Semantics? April 2004

14. Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, Joseph Sifakis The IF
toolset In SFM-04:RT 4th Int. School on Formal Methods for the Design of
Computer, Communication and Software Systems: Real Time LNCS June 2004

15. Ingo Schinz, Tobe Toben, Christian Mrugalla, Bernd Westphal The Rhapsody
UML Verification Environment In Proceedings of the 2nd International
Conference on Software Engineering and Formal Methods (SEFM 2004) IEEE
September 2004

16. Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, Martin Steffen
Object Connectivity and Full Abstraction for a Concurrent Calculus of Classes In
To appear in the LNCS Proceedings of the First International Colloquium on
Theoretical Aspects of Computing, ICTAC 2004 2004

July 2005 55

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammWestphal04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammWestphal04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=boer04:_compos_verif_objec_creat_inter_invar
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=boer04:_compos_verif_objec_creat_inter_invar
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas04:_compos_proof_sieve_erat_pvs
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas04:_exten_type_system_ocl_templ_trans
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas04:_exten_type_system_ocl_templ_trans
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas03:_formal_uml_models
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas03:_formal_uml_models
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=kyas03:_messag_specif_ocl
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-04-spin
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberGraf-04-spin
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FMCO-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AbdeddaimAsarinMaler04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaKerbaaMaler04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaKerbaaMaler04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KuglerWeiss04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Hooman-EWSA-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Ober-SIVOES-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Ober-SIVOES-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaGrafOber*-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaGrafOber*-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ruve2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ruve2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abraham.bonsangue.deboer.steffen:fa

Omega IST-2001-33522 - Final Project Report

17. J.V.Guillen Scholten, F. Arbab, F.S. de Boer, M. M. Bonsangue A component
coordination model based on mobile channels In Journal of Fundamenta
Informaticae, Special issue of Foclasa'02 vol. Accepted for publication 2004

18. F. de Boer, M.M. Bonsangue, J. Guillen-Scholten Component coordination:
From objects to mobile channels In Mathematical Frameworks for Component
Software - Models for Analysis and Synthesis, He Jifeng and Zhiming Liu (eds.)
World Scientific vol. To appear

19. Joost Jacob A Rule Markup Language and its application to UML In Proceedings
of the 1st International Symposium on Leveraging Applications of Formal Methods,
Paphos, Cyprus LNCS 2004

20. Marcelo Zanconi Modélisation et Analyse de Systèmes Temps Réel avec
Préemption, Incertitude et Dépendence Institut National Polytechnique de Grenoble
June 2004

21. T. Arons, J. Hooman, H. Kugler, A. Pnueli, M. van der Zwaag Deductive
Verification of UML Models in TLPVS In Proceedings UML 2004 Springer-Verlag
2004

22. J. Hooman, N. Mulyar, L. Posta Validating UML models of Embedded Systems
by Coupling Tools In Proceedings Workshop on Specification and Validation of
UML models for Real-Time and Embedded Systems (SVERTS 2004) 2004

23. D. Harel, H. Kugler, A. Pnueli Smart Play-Out Extended: Time and Forbidden
Elements In International Conference on Quality Software (QSIC04) IEEE Press
2004

24. D. Harel, H. Kugler The RHAPSODY Semantics of Statecharts (or, On the
Executable Core of the UML) In Integration of Software Specification Techniques
for Application in Engineering Lect. Notes in Comp. Sci. vol. 3147 Springer-Verlag
2004

Proceedings of events organised by the project

25. Frank de Boer, Marcello Bonsangue, Susanne Graf, Willem-Paul de Roever
(Eds.) 2nd Symposium on Formal Methods for Components and Objects, revised
lectures LNCS vol. 3188 2004

26. Susanne Graf, Oystein Haugen, Ileana Ober, Bran Selic (Eds.) 2nd workshop on
Specification and Validation of UML models for Real Time and Embedded
Systems, SVERTS 2004 Verimag technical report 2004

27. Susanne Graf, Oystein Haugen, Ileana Ober, Bran Selic SVERTS -
Specification and Validation of Real-time and Embedded Systems, workshop
overview LNCS 3297 2004

28. F.S. de Boer, M. Bonsangue (Eds.) Compositional verification of UML models In
Post proceedings of the UML 2003 workshop on compositional verification of UML
models Electronic Notes in Computer Science vol. 101 Elsevier Science 2004

29. F.S. de Boer, M. Bonsangue (Eds.) Formal Methods for Components and Objects
- A theoretical perspective In Special issue of Theoretical Computer Science
Journal of Theoretical Computer Science vol. In press Elsevier Science 2004

30. F.S. de Boer, M. Bonsangue (Eds.) Formal Methods for Components and Objects
- Pragmatic aspects and applications In Special issue of Science of Computer
Programming Journal of Science of Computer Programming vol. In press. Elsevier
Science 2004

Related work, input to or continuation of work in Omega

July 2005 56

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GuillenArbab*-FA2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GuillenArbab*-FA2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BoerBonsangueGuillen-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BoerBonsangueGuillen-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Jacob-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Zanconi-2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Zanconi-2004
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AHKPZ-UML04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AHKPZ-UML04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerPnueli04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerPnueli04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKugler04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKugler04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GrafHaugenOberSelic-Sverts-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GrafHaugenOberSelic-Sverts-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GrafHaugenOberSelic-Sverts-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=UML2003
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-TCS-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-TCS-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-SCP-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-SCP-02

Omega IST-2001-33522 - Final Project Report

31. Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, Martin Steffen A
Tool-supported Assertional Proof System for Multithreaded Java In Journal of
Object Technology 2004

32. J. Hooman, N. Mulyar, L. Posta Coupling Simulink and UML Models In B.
Schneider, G. Tarnai (Eds.) Proceedings of Symposium FORMS/FORMATS 2004
2004

33. Susanne Graf, Andreas Prinz Time in ASMs - Some problems and solutions In
Forte 2004, work in progress session October 2004

2003
Omega Publications

1. Werner Damm, Bernd Westphal Live and let die: LSC based verification of
UML models In Frank de Boer, Marcello Bonsangue, Susanne Graf, Willem-Paul
de Roever (Eds.) Proceedings of the 1st Symposium on Formal Methods for
Components and Objects (FMCO 2002) LNCS Tutorials vol. 2852 2003

2. Susanne Graf, Ileana Ober A Real-time profile for UML and how to adapt it to
SDL In SDL Forum 2003, July 1-4, Stuttgart LNCS (2708) July 2003

3. Ileana Ober An ASM semantics for UML Derived from the meta-model and
incorporating actions In Abstract State Machines - Advances in Theory and
Applications. LNCS vol. 2589 Proceedings 10th International Workshop, ASM
2003 2003

4. Gregor Gössler, Joseph Sifakis Component-based construction of deadlock-free
systems In proceedings of FSTTCS 2003, Mumbai, India LNCS 2914 2003

5. Werner Damm, Bernhard Josko, Amir Pnueli, Angelika Votintseva
Understanding UML: A Formal Semantics of Concurrency and Communication in
Real-Time UML In Frank de Boer, Marcello Bonsangue, Susanne Graf, Willem-
Paul de Roever (Eds.) Proceedings of the 1st Symposium on Formal Methods for
Components and Objects (FMCO 2002) LNCS Tutorials vol. 2852 2003

6. M. van der Zwaag, J. Hooman A Semantics of Communicating Reactive Objects
with Timing In Proceedings of Workshop on Specification and Validation of UML
models for Real-Time Embedded Systems (SVERTS 2003) 2003

7. Gregor Gössler, Joseph Sifakis Composition for Component-Based Modeling In
1st Symposium on Formal Methods for Components and Objects, revised lectures
LNCS Tutorials vol. 2852 2003

8. Susanne Graf, Ileana Ober, Iulian Ober Timed annotations in UML In Workshop
on Specification and Validation of UML models for Real Time and Embedded
Systems (SVERTS 2003), a satellite event of UML 2003, San Francisco, October
2003 October 2003

9. Iulian Ober, Susanne Graf, Ileana Ober Validating timed UML models by
simulation and verification In Workshop on Specification and Validation of UML
models for Real Time and Embedded Systems (SVERTS 2003), a satellite event of
UML 2003, San Francisco, October 2003 October 2003

10. Christos Kloukinas, Chaker Nakhli, Sergio Yovine A Methodology and Tool
Support for Generating Scheduled Native Code for Real-Time Java Applications In
EMSOFT 2003 LNCS vol. 2855 2003

11. Christos Kloukinas, Sergio Yovine Synthesis of Safe, QoS Extendible,
Application Specific Schedulers for Heterogeneous Real-Time Systems In
Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS'03)
ISBN 0-7695-1936-9 2003

July 2005 57

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abraham*:ftfjp03-journal
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abraham*:ftfjp03-journal
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FORMS04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Prinz-ASM04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammWestphal02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammWestphal02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Ober-SDL03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Ober-SDL03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberASM2003
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=OberASM2003
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FSTTCS03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FSTTCS03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammJoskoPnueli*02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=DammJoskoPnueli*02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HZSVERTS03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HZSVERTS03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=GoesslerSifakis-FMCO-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Ober-UML03a
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Ober-UML03b
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-Ober-UML03b
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasNakhliYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasNakhliYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasYovine-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=KloukinasYovine-03

Omega IST-2001-33522 - Final Project Report

12. D. Garbervetsky, Sergio Yovine, Marcello Zanconi Towards symbolic
Reachability Analysis for preemptive Schedulers using difference constraints
VERIMAG 2003

13. David Harel, Hillel Kugler, Rami Marelly, Amir Pnueli Smart play-out In
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications ACM Press 2003

14. Y. Abdeddaïm, E. Asarin, O. Maler On optimal scheduling under uncertainty In
Proceedings of TACAS 2003, Warsaw LNCS 2003

15. M. Bozga, O. Maler Timed Automata Approach for the AXXOM Case Study
Verimag 2003

16. Susanne Graf States and events in the context of timed systems Verimag
September 2003

17. Y. Bontemps, P. Heymans, H. Kugler Applying LSC to an Air Traffic Control
Case Study In Proc. 2nd Int. Workshop on Scenarios and State Machines
(SCESM'03) 2003

Proceedings of events organised by the project

18. Frank de Boer, Marcello Bonsangue, Susanne Graf, Willem-Paul de Roever
(Eds.) 1st Symposium on Formal Methods for Components and Objects, revised
lectures LNCS Tutorials vol. 2852 2003

19. Susanne Graf, Oystein Haugen, Ileana Ober, Bran Selic (Eds.) 1st workshop on
Specification and Validation of UML models for Real Time and Embedded
Systems (SVERTS 2003) In Verimag technical report 2003/10/22 and http://www-
verimag.imag.fr/EVENTS/2003/SVERTS/ 2003

Related work, input to or continuation of work in Omega

20. Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever, Martin
Steffen A Tool-Supported Proof System for Monitors in Java In Proceedings of the
FMCO 2002 2003

21. Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, Martin Steffen A
Tool-supported Assertional Proof System for Multithreaded Java In Susan
Eisenbach, Gary T. Leavens, Peter Müller, Arnd Poetzsch-Heffter, Erik Poll (Eds.)
Proc. of the Workshop on Formal Techniques for Java-like Programs - FTfJP'2003
2003

22. A. Pnueli, T. Arons TLPVS: A PVS-based LTL verification system In
Verification--Theory and Practice: Proceedings of an International Symposium in
Honor of Zohar Manna's 64th Birthday Lect. Notes in Comp. Sci. vol. Springer-
Verlag 2003

23. T. Arons Verification of an Advanced MIPS-type Out-of-Order Execution
Algorithm In Proc. 16th International Conference on Computer Aided Verification
(CAV'04) Lect. Notes in Comp. Sci. vol. 3144 Springer-Verlag 2003

2002
Omega Publications

1. F. Arbab, F.S. de Boer, M. Bonsangue, J. Scholten MoCha, a middleware based
on mobile channels In Proceedings of COMPSAC 2002 IEEE Computer Scociety
Press 2002

July 2005 58

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=YovineZanconi-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=YovineZanconi-04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Harel-Kugler-Marelly-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AbdeddaimAsarinMaler03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Bozga-Maler-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BontempsHeymansKugler03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BontempsHeymansKugler03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=FMCO-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=SVERTS-03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abrahammumm.deboer.deroever.steffen:toolsupported
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abraham*:ftfjp03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=abraham*:ftfjp03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=PnueliAarons03
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Arons04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Arons04
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Arbab-deBoer-Bonsangue-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Arbab-deBoer-Bonsangue-02

Omega IST-2001-33522 - Final Project Report

2. J.V. Guillen-Scholten, F. Arbab, F.S. de Boer, M.M. Bonsangue Mobile
Channels, Implementation Within and Outside Components In Proceedings of
Formal Methods and Component Interaction Electronic Notes in Computer Science
vol. 66.4 Elsevier Science 2002

3. Marius Bozga, Susanne Graf, L. Mounier IF-2.0: A Validation Environment for
Component-Based Real-Time Systems In Proceedings of Conference on Computer
Aided Verification, CAV'02, Copenhagen LNCS (2404) Springer Verlag June 2002

4. J.V. Guillen-Scholten, F. Arbab, F.S. de Boer,, M.M. Bonsangue A Channel-
based Coordination Model for Components In Proceedings of 1st International
Workshop on Foundations of Coordination Languages and Software Architectures
Electronic Notes in Computer Science vol. 68.3 Elsevier Science 2002

5. D. Harel, R. Marelly Playing with Time: On the Specification and Execution of
Time-Enriched LSC In Proc. 10th IEEE/ACM Int. Symp. on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS 2002),
Fort Worth, Texas 2002

6. Jozef Hooman Towards Formal Support for UML-based Development of
Embedded Systems In Proceedings PROGRESS 2002 Workshop, STW 2002

7. Joseph Sifakis Scheduler Modelling Based on the Controller Synthesis Paradigm
In Journal of Real-Time Systems, special issue on Control Approaches to Real-
Time Computing vol. 23 2002

8. R. Marelly, D. Harel, H. Kugler Multiple Instances and Symbolic Variables in
Executable Sequence Charts In Proc. 17th Ann. ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA'02) 2002

Proceedings

9. Damm, W., Olderog, E.-R.(Eds) FTRTFT 2002 In Formal Techniques in Real-
Time and Fault-Tolerant Systems, 7th International Symposium, vol. 2469 LNCS
2002

Related work, input to or continuation of work in Omega

10. Susanne Graf Expression of time and duration constraints in SDL In 3rd SAM
Workshop on SDL and MSC, University of Wales Aberystwyth LNCS (2599) June
2002

11. D. Harel, H. Kugler, R. Marelly, A. Pnueli Smart Play-Out of Behavioural
Requirements In FMCAD conference 2002 Lect. Notes in Comp. Sci. vol. 2517,
2002

12. K. Altisen, G. Gössler, J. Sifakis Scheduler modelling based on the controller
synthesis paradigm In Journal of Real-Time Systems, special issue on Control
Approaches to Real-Time Computing 2002

July 2005 59

http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ScholtenArbabDeBoer02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=ScholtenArbabDeBoer02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaMounierGraf*CAV02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=BozgaMounierGraf*CAV02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Guillen-Arbab-deBoer-02b
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Guillen-Arbab-deBoer-02b
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelMarelly02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelMarelly02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Hooman-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Hooman-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Sifakis-02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=MarellyHarelKugler02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=MarellyHarelKugler02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=Graf-SAM02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerMarelly*02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=HarelKuglerMarelly*02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AltisenGoesslerSifakis02
http://www-omega.imag.fr/biblio/biblio.php?view=item&biblio=publications&key=AltisenGoesslerSifakis02

	Executive Summary
	Project Objectives
	OMEGA general methodology and architecture
	Problem statement
	General tool set architecture and integration
	Workflow for the considered profile and tools
	References concerning the general methodology

	OMEGA UML profile for real-time and embedded systems and its
	UML profile
	Operational profile and Kernel Model
	Real-time extensions and observers
	OCL
	Component model
	Live Sequence Charts
	Availability of the profile

	Semantics
	References concerning profile and semantics

	OMEGA Tool set for validation of UML specifications
	Overview on the tool set
	Untimed Verification tool UVE
	IF/IFx tool for verification of timing and dynamic propertie
	The LSC Play Engine
	PVS based tools and methods

	Overview on work on scheduling and coordination
	Fundamental results
	Applications

	Interfaces provided and used by the toolset
	Common format for model representation
	Additional interfaces provided

	References concerning verification methods and tools

	Experimental results: the OMEGA case studies
	Case study 1: Ariane-5 Flight programme
	Case study 2: A Vote Monitor
	Case study 3: MARS system
	Case study 4: A service component based depannage system
	Case study 5: Compositional verification of the MARS case st
	References concerning the Case studies

	Summary of results and achievements
	Lessons learned
	What would we do the same? What different?

	Plans for the future
	Profile and semantics
	Methods and Tools
	Other plans`

	Annex A: List of project publications

