
Validation of UML models via a mapping to
communicating extended timed automata?

Iulian Ober, Susanne Graf, Ileana Ober

VERIMAG
2, av. de Vignate

38610 Gières, France
E-mail: {ober,graf,iober}@imag.fr

Abstract. We present a technique and a tool for model-checking opera-
tional UML models based on a mapping of object oriented UML models
into a framework of communicating extended timed automata - in the
IF format - and the use of the existing model-checking and simulation
tools for this format.

We take into account most of the structural and behavioral characteris-
tics of classes and their interplay and tackle issues like the combination of
operations, state machines, inheritance and polymorphism, with a par-
ticular semantic profile for communication and concurrency. The UML
dialect considered here, also includes a set of extensions for expressing
timing.

Our approach is implemented by a tool importing UML models via
an XMI repository, and thus supporting several commercial and non-
commercial UML editors. For user friendly interactive simulation, an
interface has been built, presenting feedback to the user in terms of the
original UML model. Model-checking and model exploration can be done
by reusing the existing IF state-of-the-art validation environment.

1 Introduction

We present in this paper a technique and a tool for validating UML models by
simulation and property verification. The reason why we focus on UML is that
we feel some of the techniques which emerged in the field of formal validation are
both essential to the reliable development of real-time and safety critical systems,
and sufficiently mature to be integrated in a real-life development process.

Our past experiences (e.g. with the SDL language [8]) show that this in-
tegration can only work if validation takes into account widely used modeling
languages. Currently, UML based model driven development encounters a big
success with the industrial world, and is supported by several CASE tools fur-
nishing editing, methodological help, code generation and other functions, but
very little support for validation.

? This work is supported by the OMEGA European Project (IST-33522). See also
http://www-omega.imag.fr



This work is part of the OMEGA IST project, whose aim is building a basis
for a UML based development environment for real-time and embedded systems,
including a set of notations for different aspects with common semantic founda-
tions, tool supported verification methods for large systems, including real-time
related aspects [11].

1.1 Basic assumptions

Before going into more detail, in this work we made the following fundamental
assumptions:
UML is broader than what we need or can handle in automatic vali-
dation. In UML 1.4 [33] there are 9 types of diagrams and about 150 language
concepts (metaclasses). Some of them are too informal to be useful in valida-
tion (e.g. use cases) while for others the coherence and relationships with the
rest of the UML model are not clearly (or uniquely) defined (e.g. collaborations,
activity diagrams, deployment).

In consequence, in this work we focused on a subset of UML concepts that
define an operational view of the modeled system: objects, their structure and
their behavior. The choices, which are not fully explained in this paper, are not
made ad-hoc. This work is part of a broader project (IST-OMEGA [1]) which
aims to define a consistent subset of UML (kernel language) to be used in safety
critical, real-time applications. See also [12, 11].
UML has neither a standard nor a broadly accepted dynamic seman-
tics. As a consequence, one facet of the OMEGA project is a quest for a suitable
semantics for UML to be used in complex, safety critical, real-time, possibly dis-
tributed applications. Effort is put into: finding the right concepts (e.g. commu-
nication mechanisms between objects, concurrency model, timing specification
features, see [12]), defining them formally (a formalization in PVS is available
[23]) and implementing and testing these concepts in tools.

In this paper we discuss only the problems of implementing and testing the
semantics, while the definition and formalization are tackled in [12] and [23]. We
describe a translation to an automata-based formalism implemented in the IF
tool [6, 9]. This results in a flexible implementation of the semantics, in which
we can easily test the choices of the OMEGA formal semantics and propose
changes.
To produce powerful tools we have to build upon the existing. This
motivates our choice to do a translation to the IF language [6, 9], for which
a rich set of tools (for static analysis, model checking with various reduction
techniques, model construction and manipulation, test generation, etc.) already
exist.

Our claim is that most of this tools work on UML-generated models with
only minor updates1

1 At least model checking, model construction and manipulation were already tested.



Moreover, in order to be usable a validation tool has to accept UML models
edited with widely used CASE tools. Our choice to work on the standard XML
representation for UML (XMI) is a step into this direction.

1.2 Our approach in more detail

In terms of language coverage, in our semantics and in our tool we focus
on the operational part of UML: classes with structural and behavioral features,
relationships (associations, inheritance), behavior descriptions through state ma-
chines and actions. The issues we tackle, like the combination of operations and
state machines, inheritance and polymorphism, run-to-completion and concur-
rency, go beyond the previous work done in this area (see section 1.3), which
has mainly focused on verification of statecharts. Our choices are outlined in
section 2.

Our implementation of the operational semantics of UML models is based
on a mapping from UML into an intermediate formal representation IF[5] based
on communicating extended timed automata (CETA). This choice is motivated
by the existence a verification toolset based on this semantic model [6, 9] which
has been productively used in a number of research projects and case studies,
e.g. in [7, 17]. The main features of the IF language are presented in section 1.4,
and in section 3 we discuss a mapping from UML into this model which respects
the semantics given in [12, 23].

An important issue in designing real-time systems is the ability to capture
quantitative timing requirements and assumptions, as well as time dependent
behavior. We rely on the timing extensions defined in the context of the
Omega project [18, 16]. We summarize these extensions and their mapping into
IF in section 4.

Another important issue is the formalism in which properties of models
are expressed. In section 5 we introduce a simple property description language
(observer objects) that reuses some concepts from UML (like objects, state ma-
chines) while remaining sufficiently expressive for a large class of linear proper-
ties. The use of concepts that are familiar to most UML users has the potential to
alleviate the cultural shock of introducing formal dynamic verification to UML
models.

Finally, section 6 presents the UML validation toolset. By using the IF tools
as underlying simulation and verification engine, the UML tools presented here
benefit from a large spectrum of model reduction and analysis techniques already
implemented therein, such as static analysis and optimizations for state-space
reduction, partial order reductions, some forms of symbolic exploration, model
minimization and comparison, etc [6, 9].

The techniques and the tool presented in this paper are subject to exper-
imental validation on several larger case studies within the OMEGA project
[1].



1.3 Related work

The application of formal analysis techniques (and particularly model checking)
to UML has been a very active field of study in recent years, as witnessed by
the number of papers on this subject ([29, 30, 28, 27, 26, 35, 14, 15, 37, 3] are
most oftenly cited).

Like ourselves, most of these authors base their work on an existing model
checker (SPIN[22] in the case of [29, 30, 28, 35], COSPAN[21] in the case of [37],
Kronos[38] for [3] and UPPAAL[25] for [26]), and on the mapping of UML to
the input language of the respective tool.

For specifying properties, some authors opt for the property language of the
model checker itself (e.g. [28, 29, 30]). Others use UML collaboration diagrams
(e.g. [26, 35]) which are too weak to express all relevant properties. We propose to
use a variant of UML state machines to express properties in terms of observers.

Concerning language coverage, all previous approaches are restricted to flat
class structures (no inheritance) and to behaviors, specified exclusively by stat-
echarts. In this respect, many important features which make UML an object-
oriented formalism (inheritance, polymorphism and dynamic binding of opera-
tions) are not dealt with. Our approach is, to our knowledge, the first to try to
fill this gap.

Our starting point for handling of UML state machines (not described in
detail in this paper) was the material cited above together with previous work
on Statecharts ([20, 13, 31] to mention only a few). In the definition of our
concurrency model we have taken inspiration from our previous assessment of
the UML concurrency model [32], and from other positions on this topic (see for
example [36]) and we respected the operational semantics defined in the OMEGA
project [12].

1.4 The back-end model and tools

The validation approach proposed in this work is based on the formal model
of communicating extended timed automata and on the IF environment built
around this model [6, 9, 10]. We summarize the elements of this model in the
following.

Modeling with communicating extended automata IF was developed
at VERIMAG in order to provide an instrument for modeling and validating
distributed systems that can manipulate complex data, may involve dynamic
aspects and real time constraints. Additionally, the model allows to describe the
semantics of higher level formalisms (e.g. UML or SDL) and has been used as a
format for inter-connecting validation tools.

In this model, a system is composed of a set of communicating processes that
run in parallel (see figure 1). Processes are instances of process types. They have
their own identity (PID), they may own complex data variables (defined through
ADA-like data type definitions), and their behavior is defined by a state machine.
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Fig. 1. Constituents of a communicating extended automata model in IF.

The state machine of a process type may use composite states and the effect of
transitions is described using common (structured) imperative statements.

Processes may inter-communicate via asynchronous signals, via shared vari-
ables or via rendez-vous. Parallel processes are composed asynchronously (i.e.
by interleaving). The model also allows dynamic creation of processes, which is
an essential feature for modeling object systems that are by definition dynamic.

The link between system execution and time progress may be described in
a precise manner, and thus offers support for modeling real time constraints.
We use the concepts from timed automata with urgency [4]: there are special
variables called clocks which measure time progress and which can be used in
transition guards. A special attribute of each transition, called urgency, specifies
if time may progress when the transition is enabled, and by how much (up to
infinity or only as long as the time-guard of the transition remains true).

A framework for modeling priority On top of the above model, we use a
framework for specifying dynamic priorities via partial orders between processes.
The framework was formalized in [2]. Basically, a system description is associated
with a set of priority directives of the form: (state condition) ⇒ p1 ≺ p2. They
are interpreted as follows: given a system state and a directive, if the condition
of the directive holds in that state, then process with ID p1 has priority over p2

for the next move (meaning that if p1 has an enabled transition, then p2 is not
allowed to move).

Property specification with observers Dynamic properties of IF models
may be expressed using observer automata. These are special processes that
may monitor2 the changes in the state of a model (variable values, contents

2 The semantics is that observer transitions synchronize with the transitions of the
system.



of queues, etc.) and the events occurring in it (inputs, outputs, creation and
destruction of processes, etc.).

For expressing properties, the states of an observer may be classified (syntac-
tically) as ordinary or error. Observers may be used to express safety properties.
A re-interpretation of success states as accepting states of a Büchi automaton
could also allow observers to express liveness properties.

IF observers are rooted in the observer concept introduced by Jard, Groz and
Monin in the VEDA tool [24]. This intuitive and powerful property specification
formalism has been adapted over the past 15 years to other languages (LOTOS,
SDL) and implemented by industrial case tools like Telelogic’s ObjectGEODE.

Analysis techniques and the IF-2 toolbox The IF-2 toolbox [6, 9] is the val-
idation environment built around the formalism presented before. It is composed
of three categories of tools:

1. behavioral tools for simulation, verification of properties, automatic test
generation, model manipulation (minimization, comparison). The tools im-
plement techniques such as partial order reductions and symbolic simulation
of time, and thus present a good level of scalability.

2. static analysis tools which provide source-level optimizations that help
reducing furthermore the state space of the models, and thus improve the
chance of obtaining results from the behavioral tools. Among the state of
the art techniques that are implemented we mention data flow analysis (e.g.
dead variable reduction), slicing and simple forms of abstraction.

3. front-ends and exporting tools which provide source-level coupling to
higher level languages (UML, SDL) and to other verification tools (Spin,
Agatha, etc.).

The toolbox has already been used in a series of industrial-size case studies
[6, 9].

2 Ingredients of UML models

This section outlines the semantic– and design–related choices with respect to the
UML concepts covered and the computation and to the execution model adopted.

2.1 UML concepts covered

In this work we consider an operational subset of UML, which includes the fol-
lowing UML concepts: active and passive classes - with their operations and
attributes, associations, generalizations - including polymorphism and dynamic
binding of operations, basic data types, signals, and state machines. State ma-
chines are not discussed in this paper as they are already tackled in many pre-
vious works like [29, 30, 28, 27, 26, 35, 15, 37, 3].

Additionally to the elements mentioned above, a number of UML extensions
for describing timing constraints and assumptions are supported. They were
introduced in [16, 18] and are discussed in section 4.



2.2 The execution model

We describe in this section some of the semantic choices made with respect to the
computation and the concurrency model implemented by our method and tools.
The purpose is to illustrate some of the particularities of the model and not to
give a complete/formal semantics for UML, which may be found in [12, 23].

The execution model chosen in OMEGA and presented here is an extension
of the execution model of the Rhapsody UML tool (see [19] for an overview),
which is already used in a large number of UML applications. Other execution
models can be accommodated to our framework by adapting the mapping to IF
accordingly.

Activity groups and concurrency. There are two kinds of classes: active and
passive, both being described by attributes, relationships, operations and state
machines.

At execution, each instance of an active class defines a concurrency unit called
activity group. Each instance of a passive class belongs to exactly one activity
group.

Different activity groups execute concurrently, and objects inside the same
an activity group execute sequentially. Groups are sequential on purpose, in
order to have some default protection against concurrent access to shared data
(passive objects) in the group. The consequence is that requests (asynchronous
signals or operation calls) coming from other groups (or even from the same in
case asynchronous signals) are placed in a queue belonging to the activity group.
They are handled one by one when the whole group is stable.

An activity group is stable when all its objects are stable. An object is stable
if it has nothing to execute spontaneously and no pending operation call from
inside its group. Note that an object is not necessarily stable when it reaches a
stable state in the state machine, as there may be transitions that can be taken
simply upon satisfaction of a Boolean condition.

The above notion of stability defines a notion of run-to-completion step for
activity groups: a step is the sequence of actions executed by the objects of the
group from the moment an external request is taken from the activity group’s
queue by one of the objects, and until the whole group becomes stable. During
a step, other requests coming from outside the activity group are not handled
and are queued.

Operations, signals and state machines. In the UML model we distinguish syn-
tactically between two kinds of operations: triggered operations and primitive
operations. Reaction to triggered operation calls is described directly in the state
machine of a class: the operation call is seen as a special kind of transition trig-
ger, besides asynchronous signals. Triggered operations differ from asynchronous
signals in that they may have a return value.

Primitive operations have the body described by a method, with an associ-
ated action. Their handling is more delicate since they are dynamically bound
like in all object-oriented models. This means that, when such an operation call



is sent to an object, the most appropriate operation implementation with respect
to the actual type of the called object and to the inheritance hierarchy has to
be executed.

With respect to call initiation, an object having the control may call a prim-
itive operation on an object from the same activity group at any time, and the
call is stacked and handled immediately. However, in case of triggered operation
calls, the dynamic call graph between objects should be acyclic, since an object
that has already called a triggered operation is necessarily in an unstable state
and may not handle any more calls. This type of condition may be verified using
the IF mapping.

Signals sent inside an activity group are always put in the group queue for
handling in a later run-to-completion step. This choice is made so that there is
no intra-group concurrency created by sending signals.

We note that the model described here corresponds to that of concurrent,
internally-sequential components (activity groups), which make visible to the
outside world only the stable states in-between two run-to-completion steps. Such
a model has been already successfully used by several synchronous languages.

3 Mapping UML models to IF

In this section we give the main lines of the mapping of a UML model to an IF
system. The idea is to obtain a system that has the same operational semantics
as the initial UML model (i.e. the same labeled transition system up to bisimula-
tion). The intermediate layer of IF helps us tackle with the complexity of UML,
and provides a semantic basis for re-using our existing model checking tools (see
section 6).

The mapping is done in a way that all runtime UML entities (objects, call
stacks, pending messages, etc.) are identifiable as a part of the IF model’s state.
In simulation and verification, this allows tracing back to the UML specification.

3.1 Mapping the object domain to IF

Mapping of attributes and associations. Every class X is mapped to a process
type PX that will have a local variable of corresponding type for each attribute
or association of X. As inheritance is flattened, all inherited attributes and
associations are replicated in the processes corresponding to each heir class.

Activity group management. Each activity group is managed at runtime by a
special process of a type called GM . This process sequentializes the calls coming
from outside the activity group, and helps to ensure the run-to-completion policy.
In each PX there is a local variable leader, which points to the GM process
managing its activity group.



Mapping of operations and call polymorphism. For each operation m(p1 : t1, p2 :
t2, ...) in class X, the following components are defined in IF:

– a signal callX::m(waiting : pid, caller : pid, callee : pid, p1 : t1, p2 : t2, ...)
used to indicate an operation call. If the call is made in the same activity
group, waiting indicates the process that waits for the completion of the call
in order to continue execution. caller designates the process that is waiting
for a return value, while callee designates the process corresponding to the
object receiving the call (a PX instance).

– a signal returnX::m(r1 : tr1, r2 : tr2, ...) used to indicate the return of an
operation call (sent to the caller). Several return values may be sent with it.

– a signal completeX::m() used to indicate completion of computation in the
operation (may differ from return, as an operation is allowed to return a
result and continue computation). This signal is sent to the waiting process
(see callX::m).

– if the operation is primitive (see 2.2), a process type
PX::m(waiting : pid, caller : pid, callee : pid, p1 : t1, p2 : t2, ...)
which will describe the behavior of the operation using an automaton. The
parameters have the same meaning as in the callX::m signal. The callee PID
is used to access local attributes of the called object, via the shared variable
mechanism of IF.

– if the operation is triggered (see 2.2), its implementation will be modeled
in the state machine of PX (see the respective section below). Transitions
triggered by a X :: m call event in the UML state machine will be triggered
by callX::m in the IF automaton.

The action of invoking an operation X :: m is mapped to the sending of a
signal callX::m. The signal is sent either directly to the concerned object (if the
caller is in the same group) or to the object’s active group manager (if the caller
is in a different group). The group manager will queue the call and will forward
it to the destination when the group becomes stable.

The handling of incoming calls is simply modeled by transition loops (in
every state3 of the process PX) which, upon reception of a callX::m will create
a new instance of the automaton PX::m and wait for it to finish execution (see
sequence diagram in figure 2).

In general, the mapping of primitive operation (activations) into separate
automata created by the called object has several advantages:

– it allows for extensions to various types of calls other than the ones cur-
rently supported in the OMEGA semantics (e.g. non-blocking calls). It also
preserves modularity and readability of the generated model.

– it provides a simple solution for handling polymorphic calls in an inheritance
hierarchy: if A and B are a class and its heir, both implementing the method
m, then PA will respond to callA::m by creating a handler process PA::m,
while PB will respond to both callA::m and callB::m, in each case creating a
handler process PB::m (figure 3).

3 This is eased by the fact that IF supports hierarchical automata.
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Fig. 3. Mapping of primitive operations and inheritance.

This solution is similar to the one used in most object oriented programming
language compilers, where a ”method lookup table” is used for dynamic
binding of calls to operations; here, the object’s state machine plays the role
of the lookup table.

Mapping of constructors. Constructors (take X :: m in the following) differ from
primitive operations in one respect: their binding is static. As such, they do not
need the definition of the callX::m signal and the call (creation) action is directly
the creation of the handler process PX::m. The handler process begins by creating
a PX object and its strong aggregates, after which it continues execution like a
normal operation.

Mapping of state machines. UML state machines are mapped almost syntacti-
cally in IF. Certain transformations, not detailed here, are necessary in order to
support features that are not directly in IF: entry/exit actions, fork/join nodes,
history, etc. Several prior research papers tackle the problem of mapping state-
charts to (hierarchical) automata (e.g. [31]). The method we apply is similar to
such approaches.

Actions. The action types supported in the original UML model are assignments,
signal output, control structure actions, object creation, method call and return.



Some are directly mapped to their IF counterparts, while the others are mapped
as mentioned above to special signal emissions (call, return) or process creations.

3.2 Modeling run-to-completion using dynamic priorities

We discuss here how the concurrency model introduced in section 2.2 is realized
using the dynamic partial priority order mechanism presented in 1.4.

As mentioned, the calls or signals coming from outside an activity group are
placed in the group’s queue and are handled one by one in run-to-completion
steps. In IF, the group management objects (GM) handle this simple queuing
and forwarding behavior.

In order to obtain the desired run-to-completion (RTC), the following priority
protocol is applied (the rules concern processes representing instances of UML
classes, and not the processes representing operation handlers, etc.):

– All objects of a group have higher priorities than their group manager:
∀x, y. (x.leader = y)⇒ x ≺ y
This enforces the following property:
As long as an object inside the group may move, the group manager will not
initiate a new RTC step.

– Each GM object has an attribute running which points to the presently
or most recently running object in the group. This attribute behaves like a
token that is taken or released by the objects having something to execute.
The priority rule:
∀x, y. (x = y.leader.running) ∧ (x 6= y)⇒ x ≺ y
ensures that
as long as an object that is already executing has something more to exe-
cute (the continuation of an action, or the initiation of a new spontaneous
transition), no other object in the same group may start a transition.

– Every object x with the behavior described by a statechart in UML will
execute x.leader.running := x at the beginning of each transition. In regard
of the previous rule, such a transition is executed only when the previously
running object of the group has reached a stable state, which means that
the current object may take the running token safely.
The non-deterministic choice of the next object to execute in a group (stated
in the semantics) is ensured by the interleaving semantics of IF.

4 UML extensions for capturing timing

In order to build a faithful model of a real-time system in UML, one needs to
represent two types of timing information:

Time-triggered behavior (prescriptive modeling): this corresponds, for example,
to the common practice in real-time programming environments to link the ex-
ecution of an action to the expiration of a delay (represented sometimes by a
timer object).



Knowledge about the timing of events (descriptive modeling): information taken
as a assumption (hypothesis) under which the system works. Examples are the
worst case execution times of system actions, scheduler latency, etc.

In addition to that, a high-level UML model may also contain timing require-
ments (assertions) to be imposed upon the system.

Different UML tools targeting real-time systems adopt different UML ex-
tensions for expressing such timing information. A standard UML Real-Time
Profile, defined by the OMG [34], provides a common set of concepts for model-
ing timing, but their definition remains mostly syntactic.

We base our work on the framework defined in [18] for modeling timed sys-
tems. The framework reuses some of the concepts of the standard real-time
profile [34] (e.g. timers, certain data types), and additionally allows expressing
duration constraints between various events occurring in the system.

4.1 Validation of timed specifications

In this section we present the main concepts taken from [18], that we use in our
framework, and we give the principles of their mapping to IF.

For modeling time-triggered behavior, we are using timer and clock objects
compatible with those of [34], which are mapped in a straightforward manner to
IF.

The modeling of the descriptive timing information makes intensive use of
the events occurring in a UML system execution. An event has an occurrence
time, a type and a set of related information depending on its type. The event
types that can be identified are listed in section 5.2, as they also constitute an
essential part of our property specification language (presented in section 5).
All these UML events have a corresponding event in IF. For example: the UML
event of invoking an operation X :: m corresponds to the event of sending the
callX::m signal, etc.

If several events of the same type and with the same parameters may occur
during a run, there are mechanisms for identifying the particular event occur-
rence that is relevant in a certain context.

Between the events identified as above, we may define duration constraints.
The constraints may be either assumptions (hypotheses to be enforced upon the
system runs) or assertions (properties to be tested on system runs).

The class diagram example in figure 4 shows how these events and duration
constraints may be used in a UML model. This model describes a typical client-
server architecture in which worker objects on the server are supposed to expire
after a fixed delay of 10 seconds. A timing assumption attached to the client says
that: ”whenever a client connects to the server, it will make a request before its
worker object expires, that is before 10 seconds”.

For testing or enforcing a timing constraint from the UML model, we are
presented with two alternatives:

– if the constraint is local to an object, i.e. all involved events are directly
observed by the object, the constraint may be tested or enforced by the IF
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process implementing the object4. It will use an additional clock for measur-
ing the duration concerned by the constraint, and a transition to an error
state (in case of an assertion) or to an invalid state (in case of an assumption)
with an appropriate guard on that clock.

– if the constraint is not local to an object (we call it global), the constraint
will be tested or enforced by an observer running in parallel with the system.

The tools will ensure that runs not satisfying a constraint are either ignored
– if it is an assumption, or diagnosed as error – if it is an assertion.

5 Dynamic properties written as UML observers

We discuss in this section a technique for specifying and verifying dynamic prop-
erties of UML models, that we call UML observers. Similarly to IF observer
automata (section 1.4), UML observers are special objects which run in parallel
with a UML system and monitor its state and the events that occur.

Syntactically, observers are described by special UML classes stereotyped
with �observer�. They may own attributes and methods, and may be created
dynamically. An important part of the observer is its state machine, which is
triggered by events occurring in the UML model, as we will see in the following.
The main issue in defining UML observers is the choice of visible event types
(which include specific UML event types like operation invocation, etc.).

For UML users, the advantage of UML observers compared to other prop-
erty specification languages is that they use concepts that are known to UML
designers (event driven state machines) while remaining sufficiently formal and
expressive.

4 This is the case in figure 4. In general, outputs and inputs of a process are directly
observed by itself, but they are not visible to other processes.
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5.1 An example of property

Let us take a simple example: assume that we have a point-to-point communi-
cation protocol described in UML. Two interfaces TX and RX encapsulate the
transmission and reception operations, and, to simplify, at runtime there exists
exactly one object implementing each interface. The interface TX has one block-
ing operation put(p : Data) (where Data is the packet type) and the interface
RX has one blocking operation get() that returns a Data.

Assume that we want to express the following reliability property: whenever
put is called with some Data, within at most 5 time units the same Data is
received at the other end. This also supposes that the user at the other end has
called get within this time frame, reception being signified by the return from
get. This property is specified in the observer in figure 5.

5.2 Basic observer ingredients

An important ingredient of the observer in figure 5 are the event specifications
on some transitions. Here, the notion of event and the event types are the ones
introduced in [18]:

– Events related to operation calls: invoke, receive (reception of call), ac-
cept (start of actual processing of call – may be different from receive),
invokereturn (sending of a return value), receivereturn (reception of the
return value), acceptreturn (actual consumption of the return value).

– Events related to signal exchange: send, receive, consume.
– Events related to actions or transitions: start, end (of execution).
– Events related to states: entry, exit.
– Events related to timers (this notion is specific to the model considered in

[16, 18] and in this work): set, reset, occur, consume.

The trigger of an observer transition may be a match clause, in which case
the transition will be triggered by certain types of events occurring in the UML



model. The clause specifies the type of event (e.g. receive in figure 5), some
related information (e.g. the operation name TX :: put) and observer variables
that may receive related information (e.g. m which receives the value of the Data
parameter of put in the concerned call).

Besides events, an observer may access any part of the state of the UML
model: object attributes and state, signal queues.

As in IF observers, properties are expressed by classifying observer states
as error or ordinary. Note that an observer may be used also to formalize a
hypothesis on system executions, in which case the observer error states mark the
system states that should be considered invalid with respect to the assumptions.

Expressing timing properties. Certain timing properties may be expressed di-
rectly in a UML model using the extensions presented in section 4. However,
more complicated properties which involve several events and more arbitrary
ordering between them may be written using observers. In order to express
quantitative timing properties, observers may use the concepts available in our
extension of UML, such as clocks.

6 The simulation and verification toolset

The principles presented in the previous sections are being implemented in the
UML-IF validation toolbox5, the architecture of which is shown in figure 6. With
this tool, a designer may simulate and verify UML models and observers devel-
oped in third-party editors6 and stored in XMI7 format. The functionality offered
by the tool, is that of an advanced debugger (with step-back, scenario generation,
etc.) doubled by a model checker for properties expressed as observers.

In a first phase, the tool generates an IF specification and a set of IF observers
corresponding to the model. In a second phase, it drives the IF simulation and
verification tools so that the validation results fed back to the user may be
marshaled back to level of the original model. Ultimately, the IF back-end tools
will be invisible to the UML designer.

As mentioned in the introduction, by using the IF tools as underlying engine,
the UML tools have access to several model reduction and analysis techniques
already implemented. Such techniques aim at improving the scalability of the
tools, essential in a UML context. Among them, it is worth mentioning static
analysis and optimizations for state-space reduction, partial order reductions,
some forms of symbolic exploration, model minimization and comparison [6, 9].

A first version of this toolset exists and is currently being used on several
case studies in the context of the OMEGA project.

5 See http://www-verimag.imag.fr/PEOPLE/ober/IFx.
6 Rational Rose, I-Logix Rhapsody and Argo UML have been tested for the moment.
7 XMI 1.0 or 1.1 for UML 1.4
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Fig. 6. Architecture of the UML-IF validation toolbox.

7 Conclusions and plans for future work

We have presented a method and a tool for validating UML models by simu-
lation and model checking, based on a mapping to an automata-based model
(communicating extended timed automata).

Although this problem has been previously studied [14, 29, 28, 27, 26, 35],
our approach introduces a new dimension by considering the important object-
oriented features present in UML: inheritance, polymorphism and dynamic bind-
ing of operations, and their interplay with statecharts. We give a solution for
modeling these concepts with automata: operations are modeled by dynami-
cally created automata, and thus call stacks are implicitly represented by chains
of communicating automata. Dynamic binding is achieved through the use of
signals for operation invocation. We also give a solution for modeling run-to-
completion and a chosen concurrency semantics using dynamic priorities.

Our experiments on small case studies show that the simulation and model
checking overhead introduced by modeling these object-oriented aspects remains
low, thus not hampering the scalability of the approach.

For writing and verifying dynamic properties, we propose a formalism that
remains within the framework of UML: observer objects. We believe this is an
important issue for the adoption of formal techniques by the UML community.



Observers are a natural way of writing a large class of properties (linear prop-
erties with quantitative time).

In the future we plan to:

– Assess the applicability of our technique to larger models. The tool is already
being applied to a set of case studies provided by industrial partners in the
OMEGA project.

– Extend the language scope covered by the tool. We plan to integrate the
component and architecture specification framework defined in OMEGA.

– Improve the ergonomics and integration of the toolset (e.g. the presentation
of validation results in terms of the UML model).

– Study the possibility of using the additional structure available in the object-
oriented UML models for improving verification, static analysis, etc.
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